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A B S T R A C T

In this paper a novel method is employed for the buckling analysis of thin-walled members. The method is
basically a shell finite element method, but constraints are applied which enforce the thin-walled member to
deform in accordance with specific mechanical criteria, e.g., to force the member to buckle in flexural, or lateral-
torsional or distortional mode. The method is essentially similar to the constrained finite strip method, but the
trigonometric longitudinal shape functions of the finite strip method are replaced by polynomial longitudinal
shape functions, and longitudinal discretization is used, which transform the finite strip into multiple finite
elements, that is why the new method can readily be termed as constrained (shell) finite element method. In the
companion to this paper a band of finite elements is discussed in detail, where ‘band’ is a segment of the member
with one single finite element longitudinally. In this paper the constraining procedure is applied on thin-walled
members discretized both in the transverse and longitudinal direction. The possible base systems for the various
deformation spaces are demonstrated here, as well as numerous buckling examples are provided to illustrate the
potential of the proposed method.

1. Introduction

Thin-walled members have complicated stability behaviour. Due to
the high slenderness, stability is the governing phenomenon in many
cases. If a thin-walled member is subjected to longitudinal compressive
stresses, three characteristic buckling classes are usually distinguished:
global, distortional, and local-plate buckling. When the effect of shear
stresses is dominant, shear buckling may also occur. Transverse
compressive stresses might lead to instability frequently referred to as
web crippling. In practical situations these buckling modes rarely
appear in isolation, but they are interacted with each other. Still,
current design approaches first separate these phenomena, and deter-
mine a capacity to each of the potential buckling, and then check the
possible interaction of them. This design approach appears also in
current thin-walled design standards, e.g. [1,2].

Capacity prediction hence requires the critical loads associated with
the various buckling modes. Nowadays, critical load calculation for
thin-walled members can readily be accomplished by some numerical
methods, the most widely used ones being the shell finite element
method (FEM), the generalized beam theory (GBT), and the finite strip
method (FSM).

FEM, by using shell finite elements, is general and can be used to
analyse almost any thin-walled member. However, a general FEM is not

able to separate the various buckling modes, which often makes it
inefficient to directly use it in standard capacity calculations. GBT has
shown that buckling deformations may be formally treated in a modal
nature that mechanically separates global, distortional, local, and other
deformations, see e.g. [3–5]. This formal separation is integral to GBT,
and allows pure buckling mode calculations and measurements of
modal participation in coupled modes. FSM is based on the work of
Cheung [6], but popularized by Hancock [7] who provided the
organizing thrust of today's member design, which later evolved into
the Direct Strength Method (DSM) [8]. Hancock introduced the notion
of the signature curve, from which quasi-pure buckling modes and
associated loads could be determined, at least for typical design. The
mechanical criteria embedded in GBT led to the development of a
special version of FSM, the constrained Finite Strip Method (cFSM), see
[9–13]. cFSM possesses the ability of modal decomposition as well as
mode identification in a manner similar to GBT.

Both GBT and cFSM is easily available, since they are implemented
into the free-to-use programs GBTUL [14] and CUFSM [15]. It is easy to
understand, however, that either the method or its available imple-
mentation is not general enough. For example, the analysed member
has to be prismatic, no holes are allowed in the members, and there are
restrictions w.r.t boundary conditions as well as loading (at least in the
available software implementations). Recent works aimed at partially
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removing these limitations, but these attempts have not led to a simple
and easily applicable general method with modal features, as discussed
in a companion paper [16].

In this paper a novel method is used. The proposed method follows
the logic of cFSM, however, the longitudinal shape functions are
changed and applied together with a longitudinal discretization.
Thus, strips are transformed into multiple shell finite elements, there-
fore, the new method can readily be termed as constrained finite
element method, abbreviated as cFEM.

The cFEM has first been reported in [17–19]. The cFEM method is
using a special shell finite element, specifically designed for the
method. The most basic feature of this special rectangular shell element
is that it distinguishes the so-called longitudinal and transverse direc-
tions. Otherwise, the shell element uses classic polynomial shape
functions, though in an unusual combination. The element, together
with the derivation of the interpolation functions is presented in detail
in [20]. The elementary stiffness matrices (i.e., elastic and geometric)
can be determined analytically. As earlier studies highlighted the
importance of some details of the derivations, the stiffness matrices
are derived in various options, as discussed in [21]. Namely: the
second-order effect of the various strain terms can be switched on or
off, as well as it is optional whether the through-thickness variation of
the stresses/strains is considered or disregarded.

In [20] it is proved that the mechanical criteria, which are necessary
for modal decomposition, can exactly be satisfied by the shape
functions of the special shell element. Furthermore, in [16] the
constraining procedure is discussed for members discretized into
multiple finite elements. More precisely: in [16] multiple finite
elements are assumed along the cross-section line, but only one single
finite element is assumed longitudinally, which in other words means
that one band of finite elements is discussed. Though one band of finite
elements alone is not enough to solve practical problems, the discussion
of a single band is important in order to understand the constraining
procedure and the resulted base systems, and it helps to construct the
modal base systems for a real member consisted of multiple bands. In
fact, real members with multiple bands are in the main focus of this
paper.

In this paper first the most important features of the new shell finite
element are summarized, based on [20]. Also the constraining proce-
dure in case of one single band of shell finite element is briefly
summarized. Then two alternatives are presented for the construction
of the modal base system of a member with multiple bands. Finally,
numerous practical examples are shown for the constrained buckling
analysis of thin-walled members.

As the numerical examples demonstrate, the here presented cFEM is
much more general than any of the existing modal decomposition
methods. Since it is based on a shell finite model, a variety of
engineering problems can be solved. The element is rectangular, which
means a certain limitation, but otherwise the method is general.
Practically there are no limits for the loading and boundary conditions.
Linear or non-linear static or even dynamic analyses can be performed,
though in this paper only elastic linear buckling problems are shown.
Holes can easily be handled, too, once they fit into the rectangular
discretization. Though the problem of holes is not the topic of this
actual paper, a few numerical examples with holes are also presented.
Finally, though here the member to be constrained is assumed to be
prismatic, piece-wise prismatic members can also be handled, by
joining prismatic members together. Again, this question is not
discussed here, only numerical examples demonstrate this ability of
the proposed cFEM.

2. Basics of cFEM

2.1. Shell finite element for cFEM

A sample thin-walled member is shown on Fig. 1. It is discretized

into shell finite elements. Local and global coordinate systems as well as
some nodal displacements are also shown. The goal of the constrained
finite element method is model the thin-walled member by shell finite
elements, and to be able perform modal decomposition via enforcing
the member to deform in accordance with pre-defined mechanical
criteria. It is also essential to satisfy these criteria exactly, i.e., not only
in specific locations (e.g., at some nodes), but all over the member: at
any x and y locations within any finite element. As concluded in
[16,20], this requires certain basic features from the interpolation
functions, that is why the otherwise classic shape functions are used in a
relatively unusual combination.

The derivation of the interpolation functions are discussed in [20],
where the displacement functions are given, too. The nodal displace-
ment degrees of freedom (DOF) are illustrated in Fig. 2. As can be seen,
the proposed element has 30 DOF: each corner node has 7 DOF (1 for u,
2 for v, and 4 for w), while there are two additional nodes at (x,y)=(a/
2,0) and (x,y)=(a/2,b) with one DOF per node for the u displacement.

2.2. cFEM in general

When a member is constrained, it is enforced to deform in
accordance with some mechanical criteria. These criteria are identical
to those applied in cFSM [e.g., 12–13], as summarized in the table of
Fig. 3. As can be seen from Fig. 3, mostly displacement derivatives (i.e.,
strains) are used, and the important question is whether the given strain
is zero or not (Y or N, respectively). In calculating the strains, all the u, v
and w functions are interpreted at the middle surface of the plates, i.e.,
at z=0. In row ‘transv. eq.’ it is given whether the cross-section
equilibrium (in the transverse direction) is satisfied or not (Y or N,
respectively).

The deformation spaces defined in Fig. 3 are described in detail in
[12,13]. It might be interesting to mention here that the mode spaces
are separated into primary and secondary mode spaces. Primary modes
are those deformations which are completely defined by the degrees of
freedom (DOF) associated with the main nodes only, i.e., those nodes at
the junction or end of the flat plates comprising the section. Secondary
modes are defined by the DOF of the sub-nodes, i.e., those nodes within
a flat plate discretized into multiple strips or elements.

It is to mention that though the table of Fig. 3 (mostly) clearly
define the listed deformation spaces, these are only the ‘displacement
derivative is equal to zero’ type criteria that can be transformed into
equations. Therefore, only these so-called null criteria can and will
directly be used in the constraining procedure, while the ‘displacement
derivative is not equal to zero’ type criteria are used only indirectly in
the construction of the deformation spaces.

As it is shown in [16], and will further be discussed here, the
mechanical criteria can be transformed into constraint matrices. The
application of the constraint matrix enforces to fulfil certain relation-
ship between various nodal degrees of freedom. Another view of
constraint matrix is that the column vectors of the matrix are the
modal base vectors of the displacement field that is represented by the
constraint matrix.

The d displacement vector may be constrained to any modal
deformation space (i.e., to a dM modal displacement vector) via:

d R d= M M (1)

where RM is a so-called constraint matrix, the derivation of which can
be found in [16] for a single band of finite elements, and will be
presented in this paper for more general cases. ‘M’might be G, D, L, S or
T, or, in fact, ‘M’ might mean any combination of base vectors from any
spaces.

By using the constraint matrix, solution in a reduced, specific
deformation space is possible. For example, first or second-order static
analysis can be done, the regular (i.e., unconstrained) problem of which
takes the following form:
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