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A B S T R A C T

While there are precise analytical model available to assess the calculation of critical and ultimate load for global
and local buckling separately, the interaction of both modes prove to be difficult as membrane effects and
imperfections are of major impact. In an experimental programme, thirteen tests on columns with high b/t-ratio
were carried out on square welded box sections made of S500 and S960 steel material, varying the global
slenderness. The experiments were re-calculated with the Finite-Element-programme Ansys. The calibrated
numerical model was subsequently used for parametric studies. The study at hand provides additionally an
analytic approach to determine a slenderness depending reduction factor to design box sections prone to coupled
instability. This approach, subsequently denoted as “generalised slenderness approach (gs)” is still orientated on
the Ayrton-Perry format, which is also the basis of the Eurocode design procedure. Local effects are not included
by omitting parts of the cross-section in the gs-approach, but by adding an additional equivalent global im-
perfection. The amplitude of this imperfection is based on the effective width method, but design charts for box
sections are developed to ease the application.

1. Introduction

1.1. Scope and background

The motivation of the study at hand is to clarify stability and ma-
terial related issues exemplified on square welded box sections and
provide designers with a procedure to assess coupled instability with an
in terms of safety and calculation effort optimised routine. Box sections
are commonly used as columns in industrial buildings, but more fre-
quently in supporting structures in bridge design.

1.2. Codes and requirements for high strength steel

While steels up to S460 are included in the Eurocode 3 family part
1–11, higher grades between S500 and S700 are regulated in an addi-
tional part 12. However, it is intended by CENTC250-SC3 to omit part
12 and transfer the contend to the respective parts of part 1–11. The
main obstacle is the assumed lower ductility and lower elongation at
fracture, εu, of higher strength material which might not comply with
the assumptions made in EC3 regarding e.g. re-distribution of stress and
strain. Especially in plastic design, the usage of HSS might lead to un-
safe structures. In consequence, in [1] three requirements were defined
to guarantee sufficient ductility, and tightened in [2] as summarised in

Table 1.
The table shows also the contradicting development of require-

ments: while the first and last requirement for the ratio of ultimate
strength to yield strength f f/u y and the elongation at fracture are loo-
sened for high strength steel to pay tribute to the actual material
properties, the uniform elongation criterion is tightened. In terms of
ductility, issues increase with increasing yield strength. However, for
global buckling this might be of no influence, as the failure mode can be
assessed purely elastic. When local effects have to be considered, the
reduced strain hardening might influence the post-buckling behaviour,
whenever only with small impact.

Aside from the ductility requirements of [1,2], for the fabrication
process the standard EN 10149-2 [3] (technical delivery conditions for
thermomechanically rolled steels), which was used for the steels in-
vestigated within this study, is valid. Compared with EC3, the minimum
f f/u y-ratio is partly lower, with 1.02 for S960M and in some cases
higher, e.g. 1.07 for S700M and 1.10 for S500M. Quenched and tem-
pered steels, regulated in EN 10025-6 [4] have higher limits with 1.18
for S500Q, 1.12 for S690Q but an also lower value for S960Q with 1.02.

1.3. Concepts to solve coupled instability

Several approaches have developed over the years, using different
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aspects to take coupled instability of local and global behaviour into
account. The multiplication method uses the product of the reduction
factors for local and global buckling, which are calculated separately
and multiplied afterwards. The method is considered to be rather
conservative. The mechanical mechanism is very simplified and thus
not satisfactorily represented. However, it was adopted in the former
German design code DIN 18800-3. The model by Rubin [5] was de-
veloped for double- and single-symmetric I-sections with bending about
the strong axis. Two approaches, one exact and one simplified, were
introduced in the late DIN 18800-2, assuming that global buckling is
dominant towards local buckling. Both approaches use pre-imperfec-
tions w0 (whereas the magnitude is depending on the buckling curve) to
amplify the stress resultants and the effective width method to reduce
the cross-section. The design check equals a theory of second-order
design check with reduced cross-section. For the Q-factor method, the
reduction factor Q is determined as the ratio of the effective cross-
section to the gross cross-section. The global slenderness is then as-
sessed by multiplying the square root of Q with the global slenderness
of the gross cross-section, and also applied on the plastic resistance of
the member. The principle of this method is mirrored in the European
design code [6]. The direct strength method was developed by Schafer
and Peköz in 1998 [7] and adopted in the American Standard AISI
S100-07 for the design of cold-formed structural steel members. In the
direct strength method, the nominal axial Pn and flexural Mn strength
resistance is determined for cold-formed columns and beams. Strict
limitations in respect of geometric properties and relations are given,
restricting the application to open sections. Firstly, the elastic buckling
modes are calculated separately for each possible failure mode, e.g.
local buckling, global buckling or distortional buckling. For the column
design, the nominal axial strength is determined by the minimum of the
separated calculated ultimate loads for global buckling Pne, local
buckling Pnl or distortional buckling Pnd. However, in [7], the authors
assert that when looking at experimental data, it becomes apparent that
when two buckling modes compete the final failure mode may not be
consistent with the elastic minimum.

1.4. Eurocode design procedure

To design against coupled instability, Eurocode3-1-1 [1] allows to
calculate the resistance with a reduction of plastic or elastic resistance
on cross-section level. In dependence of boundary conditions and mo-
ment distribution along the column, occurring bending moments are
increased by factors k. In the cases investigated within this paper, the
moment distribution along one axis of the column was always constant,
while the perpendicular axis has a moment of zero magnitude. As the
cross-sections were all squared, the design equation simplifies to:
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and =C 1my for a constant moment distribution along the column. The
moment resistance MRk for cross-section Class 4 is given as the effective
elastic resistance:

=M f W·Rk y eff (3)

According to [1], a reduction of the cross-section has to be taken
into account to capture the loss of stiffness due to plate buckling. With
the local reduction factors an effective cross-section is calculated, which
is used for the definition of the resistance and thus influences also the
definition of the slenderness, see Eq. (4).
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To calculate an effective cross-section due to local buckling, [8]
offers a basic/ simplified procedure and a second possibility with a
reduced slenderness λp,red, under consideration of the actual loading
conditions: clause 4.4(4) of [8]. For the basic procedure, the by ρ re-
duced plate-width for all four plates is assessed separately using the
known local buckling reduction curve:
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ψ is in this context the stress ratio along each plate. The slenderness is
characterised by:
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Using this simple approach, the plates of the cross-section are
treated individually and any interaction of them is neglected.

In clause 4.4(4) of [8] a reduced slenderness under consideration of
the actual stress distribution σcom,Ed is taken into account:
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Background information on EC3-1–5 can be found e.g in [9–11].
The global column reduction factor χc on the resistance is then as-

sessed by:
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ϕ is thereby calculated under consideration of the imperfection factor α,
which equals in the study at hand 0.34, using buckling curve b.

= + − +ϕ α λ λ0.5[1 ( 0.2) ]c c
2 (9)

The buckling coefficient α denotes the sensitivity of the cross-sec-
tion towards imperfections. Structural and geometrical imperfections
are of vital importance in stability design. Especially the structural
imperfections are not easily to handle for analytical or hand calcula-
tions. Sophisticated numerical programmes would be needed, which
contradicts the demand for efficient design. Therefore, the reduction
curves for global as well as local buckling include structural as well as
geometric imperfections from fabrication and assembling processes.
EC3-1-1 distinguishes thereby 5 buckling curves for global buckling,
where cross-sections are classified according to their sensitivity towards
these imperfections. E.g for weak-axis bending of an I-section, the
corresponding buckling curve is always worse than the curve for strong
axis bending. Higher strength steel is generally better classified due to
lower residual stress. The code provides Table 5.1 for the to the im-
perfection factor and analysis method corresponding initial curvature,
from which the initial imperfection e0 can be read. These imperfection
factors are depending on the buckling curve and analysis method,
elastic or plastic. In this paper, the definition for e0 was used under the
assumption of buckling curve b for welded box sections, see Tables 6.1
and 6.2 of [1], resulting in =e 1/250·Length0 and =α 0.34.

Background information on EC3-1-1 is provided by the Technical
Committee 8 – Stability of ECCS in [12].

Table 1
Ductility requirements in EC3 for mild and high strength steel.

S235–S460 S500–S700
(EN 1993-1-1) (EN 1993-1-12)

f f/u y ≥ 1.10 ≥ 1.05

εu ≥ f E15 /y ≥ f E15 /y

A ≥ 15% ≥ 10%
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