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A B S T R A C T

The purpose of this paper is to investigate the impact of the geometric imperfection on the interaction of
buckling modes for thin-walled cold-formed steel members with a quantitative modal identification approach.
Previous studies showed that the interaction of buckling modes varies during the loading process and how
buckling interacts depends not only on the section itself but also on the geometric imperfections in the member.
This interaction could change the failure modes of the member and its strength accordingly. This paper in-
tegrates a modal identification approach based on constrained finite strip method to track this interaction out of
the shell finite element model for nonlinear collapse analyses. The geometric imperfections are included in the
computational shell finite element model using the traditional modal approach with stochastically simulated
magnitudes. The simulations are performed on five specially selected cold-formed steel sections that are deemed
to be local-dominant, distortional-dominant, local-distortional interacted, Pcr-equal interacted, and Pn-equal
interacted. The deformations of the analyses are categorized into the fundamental deformation modes commonly
available to cold-formed members: local, distortional, and global. Sensitivity of imperfection is studied by tra-
cing the variation of mode interaction, in particular, for the failure mode. Peak load and associated mode
participations are investigated. In addition, a statistical study of the impact of imperfections on the potential
failure mode at peak is provided. The potential correlation of the member strength with mode participation is
explored, which will shed light on the coupled instability of cold-formed steel member, in particular on in-
vestigating the impact of mode participations to member strength.

1. Introduction

Due to high cross-sectional slenderness, a variety of buckling be-
haviors usually governs the strength of thin-walled members. These
buckling behaviors, as commonly acknowledged, can be generally ca-
tegorized as: local (local-plate), distortional, and global (Euler) buck-
ling. The different post-buckling strengths and potential interaction
between these buckling modes require the analysis and design with
appropriate separation and identification of these buckling modes. In
current design specifications, such as AISI-S100 [1], the design proce-
dure requires calculating the design strengths of these three modes
separately with consideration of potential interaction (e.g., global-local
interaction has been explicitly included in the Direct Strength Method).

Recent advances in computational methods have enabled the ana-
lyses on mode separation and identification for member stability, no-
ticeably, Generalized Beam Theory (GBT) [2,3] and the constrained
Finite Strip Method (cFSM) [4–10]. Both methods can provide a formal
means to separate the buckling modes into the fundamental mode
classes such as, global, distortional, local, shear and transverse

extension, in particular for elastic buckling analysis. Extension of GBT
has enabled mode separation for nonlinear analysis with material
plasticity [11,12]. While the extension of cFSM has focused on applying
the modal identification concept in cFSM towards the shell finite ele-
ment method to take advantage of its versatility in computational
modeling and analysis [13,14]. This extension provides a means of
formal modal identification similar to cFSM (or GBT), which overcomes
the barrier of identifying modes requiring a laborious and completely
subjective procedure employing visual investigation.

In experimental observations of thin-walled cold-formed steel
member [15], the failure mode and final collapse mechanisms have
significant contributions from other modes (e.g., distortional). It is well
known that the geometric imperfections impact the strengths of thin-
walled member greatly and appropriate consideration in computational
model is necessary [16–18]. Advanced analysis methods have been
proposed [19–22] and much more is still needed in the field of com-
putationally modeling thin-walled members [23]. Previous studies
utilizing the modal identification method for shell finite element
method [13,14] showed that how buckling modes interact depends not
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only on the section itself but also on the geometric imperfections in the
member. This mode interaction could change the failure modes of the
member and its strength accordingly.

Hence, in this paper, the impacts of geometric imperfections on the
mode interactions and strengths of thin-walled cold-formed steel
members (in particular, columns) have been investigated by stochasti-
cally simulating the geometric imperfections in shell finite element
method. Then the mode interactions are studied through the modal
identification of the shell finite element model for nonlinear collapse
analyses. The geometric imperfections are included in the computa-
tional shell finite element model using the traditional modal approach
with stochastically simulated magnitudes. The simulations are per-
formed on five specially selected cold-formed steel sections that are
deemed to be local-dominated, distortional-dominated, and local-dis-
tortional interacted (three types). Therefore, how modes interact at
failure is traced and studied.

2. Modal identification for shell finite element method

The modal identification for shell finite element method is origi-
nated from the constrained Finite Strip Method (cFSM) by separating
the original displacement field into the four categorized and reduced
buckling mode classes: G, D, L, and ST (denoting the Global,
Distortional, Local, and Shear and Transverse extension modes, re-
spectively). The separation is based on their corresponding mechanical
assumptions, as has been typical of the cFSM literature [4–6,8–10,24].
Constraint matrices are defined through the application of the me-
chanical assumptions for each mode class and the full matrices of all
modes (R) span the original full deformation space, which represent a
transformation of the solution from the original nodal degrees of
freedom to a basis where G, D, L, and ST deformations are separated. In
fact, columns of R are referred as ‘base vectors’. These vectors are the
nodal representations of mode deformations. In cFSM, transformations
of bases are possible [8,24,25].

Due to the discrepancy of the degree of freedom of displacement
vectors between cFSM and shell FEM, appropriate transformation of the
base vectors in cFSM to shell FEM's displacement field is necessary and
can be fulfilled through an interpretation using the cFSM shape func-
tions (note, since cFSM is based on semi-analytical FSM. The shape
functions are those utilized by semi-analytical FSM.) Therefore, the
basis R is expanded consistent with the shell FEM displacement field
(RFE). See details in [13].

Once the basis is constructed for shell finite element, modal iden-
tification can be performed on any general displacement vector from
shell finite element analysis through a simple minimization procedure
to assign participation coefficients on each base vector. For instance,
the nonlinear collapse analysis problem, in an FEM context, can be
expressed as:

+ + =K K K D F( )e g p (1)

where, Ke is the conventional elastic stiffness matrix, Kg is the geometric
stiffness matrix depending upon the current forces applied on the
structure, Kp is the plastic reduction matrix to account for yielding, D is
the displacement vector, F is the consistent nodal forces applied on the
structure. Note, for the collapse analysis of thin-walled members, the
second-order effects and plasticity require an iterative equilibrium path
tracing techniques, such as the arc-length method (the modified Riks
method [26] in ABAQUS). The minimization is performed on the dis-
placement vector D as a linear least square problem:

− −D R C D R Cmin( ) ( )FE
T

FE (2)

where C is the contribution coefficients (for modes of G, D, L, and ST).
Then the summation of the contributions in a particular class (e.g., L) is
typical to form the predicted modal participations.

For collapse analysis, the identification procedure can be performed
on D to categorize the buckling modes of each step during the collapse

analysis by using the generalized base functions. More details about the
theoretical background of modal identification for shell finite element
method can be found in [13].

3. FEM modeling for nonlinear collapse analysis

To predict the ultimate strength of thin-walled structures using shell
finite element modeling and to investigate the collapse behavior, the
computational model shall include the necessary material and geo-
metric nonlinearity along with other input parameters that the simu-
lation will be highly sensitive to. These model inputs include geometric
imperfections, residual stresses, plastic strain, yield criteria, material
model, boundary conditions, and also the fundamental mechanics,
particularly with regard to element selection and solution schemes
[17,27]. Details about the modeling parameters are following the stu-
dies the author has done in [13] and a brief summary is provided herein
with expanded details on the geometric imperfection using stochastic
simulations. Note, all the analyses performed in this paper utilize the
commercial finite element package ABAQUS [26].

– Element: the S4 is a 4-node linear element (fully integrated) from
the ABAQUS library of elements

– Mesh: fine mesh and the element aspect ratio is controlled between
½ to 2 to avoid element distortion under large deformations

– Boundary conditions: local-plate simply supported conditions,
which imply warping fixity at the member ends

– Loading: the end shortening (loading) is applied at the end to si-
mulate column member

– Material: homogeneous and isotropic and modeled as elastic-per-
fectly plastic (von Mises yield criteria) with Young's modulus E =
210,000 MPa, Poisson's ratio v = 0.3, and a yield stress of 345 MPa

– Solution scheme: the arc-length method (the modified Riks method
[26] in ABAQUS)

3.1. Imperfections: stochastic simulation

With the complex instability nature of thin-walled members, geo-
metric imperfections have been shown to have a significant impact on
their ultimate strength and post-buckling mechanisms. Careful treat-
ment of geometric imperfection shall specify both the imperfection
distribution and magnitude. Generally speaking, there are two kinds of
approaches available to simulate the imperfection field in computa-
tional modeling. First one, if measured imperfection field is available, is
that the computational modeling of thin-walled members can be si-
mulated by closely tying it with measure data. Great advances have
been made, in particular for cold-formed steel member, in full field
imperfection measurement [28] and simulations [29]. Second one,
which is a commonly used approach, is to use a portion of the thickness
of the members as the magnitude and the buckling mode shapes as the
distribution [18]. The distribution encompasses the distribution of both
with the cross-section and along the longitudinal direction of the
member.

A variety of approaches can fulfill this task and has been studied in
[18]. In this study, the traditional modal approach is employed. Only
the cross-sectional geometric imperfections following the mode shapes
of local and distortional (L and D in Fig. 1a) are modeled and global
imperfections such as camber, bow, and twist are not included. Parti-
cularly, the distribution of the imperfection within the cross section is
seeded from the local and distortional buckling mode shapes generated
from a CUFSM analysis [9], and the longitudinal distribution follows a
sinusoidal function with a half-wave length associated with each mode
shapes. In addition, the magnitude is a function of the plate thickness.
Stochastic simulation is performed on the measured magnitude sum-
marized in [17]. To simulate, the probability density functions of local
and distortional imperfection magnitudes are taken as a lognormal
distribution as shown in Fig. 1a. The mean and standard deviation for
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