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A B S T R A C T

This paper provides means for obtaining the first three significant vibration modes for rectangular plates based on
mass participation ratios. A non-dimensional frequency parameter is presented which results into the vibration
frequency of rectangular plates at each of these three significant modes. Various aspect ratios and four com-
binations of boundary conditions at the plate edges are studied. A correlation between the nonlinear load-
deformation behavior of the plate and its vibrational behavior is also presented accordingly. It is demonstrated
that the vibration frequency of the studied rectangular plates increases significantly upon increasing the applied
lateral pressure if the large deformation effects are considered in the analysis. The easy-to-follow method of
frequency calculation presented in this paper is useful for assessing the dynamic characteristics of rectangular
plates with or without lateral pressure that are subject to vibration.

1. Introduction

Stiffened plates with rectangular panels are one of the most
common forms of thin walled structures in industrial, naval and aero-
space structures. The walls of industrial ducts, ship hauls, rectangular
bins and aircraft wings are examples of such plates. The vibration of
rectangular plates has gained the attention of many researchers in the
past decades. Structural vibration analysis involves studying the vi-
bration properties of any structure that is subjected to any form of vi-
brating force. Resonance conditions where the forcing frequency and
the natural frequency of the structure are the same (or very close) are to
be avoided. Although there are no code regulations about the resonance
checking, structural engineers tend to set the limits of± 20% as the
resonance domain, i.e. if the forcing frequency is within the range of
0.8–1.2 times the natural frequency, the structure is considered as
“prone to resonance”. However, there are still questions to be answered
e.g.: “How many modes should be considered?” and “Which modes are
important?” that are involved with the vibration analysis of structures.
Answering these questions for the cases of single-degree-of-freedom
(SDOF) and multi-degrees-of-freedom (MDOF) structures involves the
measurement of the participation of the structural mass in the desired
DOFs. For the case of SDOF systems, there is only one mode of vibration
and the mass participation for that mode is merely 100%. The vibration
frequency at this mode is often called the “fundamental frequency”.
Similarly, The fundamental frequency in MDOF systems corresponds to
the mode with the highest mass participation which is usually achieved

at the first degree of freedom.
While the main aspects of the structural design of rectangular plates

are the load-deformation and load-stress behavior, vibration-induced
limit states such as fatigue and loosening of connections might cause
unforeseen deficiencies during the service life of the structure if it is
prone to resonance with the applied dynamic loads.

Several studies in terms of closed-form solutions and numerical
methodologies to calculate the frequencies of vibration of rectangular
plates are available in the literature including Gorman [13], Soedel
[35], Amabili [2] and Chakraverty [6]. Effects of several parameters on
the natural frequency of rectangular plates are the topic of further re-
search including the studies by Liew et al. [19] wherein the effects of in-
plane isotropic pressure on the vibration response of thick rectangular
plates were discussed. More recently, Xiang et al. [43] presented one of
the first known exact solutions for the vibration of rectangular multi-
span plates with two opposite edges simply supported using the Levy
type solution method and the state-space technique. Phillips and Jubb
[27] presented a series of tests to verify the natural frequency of vi-
bration of an approximately clamped rectangular plate due to in-
creasing lateral distortion against the existing theory initially presented
by Reissner [31]. The initial distortion of the plate in their experimental
tests was applied by deflecting the plate using a rigid block at the center
of the plate and a hydraulic jack prior to the vibration test. Manzanares-
Martínez et al. [22] presented the lower normal modes of vibration of
rectangular plates through experimental and theoretical analysis. Their
experimental tests involved employing electromagnetic-acoustic
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transducers on a thin rectangular plate in order to measure the fre-
quencies of vibration mainly in the acoustic modes with high fre-
quencies.

Cho et al. [8] studied the vibration of rectangular plates for the case
of bottom plate of fluid containers where the plate is in direct contact
with fluid. The fluid-structure interaction was the focus of that study
using the Lagrange's equation of motion to relate the potential and ki-
netic energies of the plate structure and surrounding fluid kinetic en-
ergy. The study of the effects of imperfections on the vibration of rec-
tangular plates was further extended by Zeng et al. [45] where a loaded
side-cracked plate was studied using the Moving-Least-Square (MLS-
Ritz) method. Huang and Lin [14] also studied the vibration of rec-
tangular plates with a straight-through crack using Fourier cosine series
with domain decomposition. Lately, Wang et al. [41] studied the effects
of rectangular openings on the vibration characteristics of rectangular
plates in order to establish a methodology for noise reduction and vi-
bration control in thin-walled structures with openings using Fourier
series.

It has to be mentioned that the concept of nonlinear vibration of
plates that includes the response of plates to periodic loading with large
amplitudes is out of the scope of this paper. This paper mainly focuses
on the free vibration and fundamental frequencies of rectangular steel
plates with various aspect ratios and the effects of large deformations
caused by static lateral pressure on those frequencies.

2. Theoretical background, FE modeling and verification

The earliest attempts on the vibration analysis of rectangular plates
in presence of in-plane (membrane and shear) forces were made by
Dawe [9] and followed by alternative solutions including numerical
methods by Mei and Yang [23], Dickinson [10], and Bassily and
Dickinson [4]. Chan and Foo [7] were amongst the first to apply the
Finite Strip method to solve the case of rectangular plate vibration with
membrane forces.

The general equation of motion for a rectangular plate under lateral
and in-plane loading is presented in Eq. (1).
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In which D is the flexural rigidity of the plate calculated as D = Eh3

/ 12(1 − υ2), c is the viscous damping, ρ is the mass density per unit
volume of plate material, h is the plate thickness and w(x, y, t) is the
dynamic displacement at any given point of plate surface at specific
time (t). The first and second derivatives of w with respect to t (i.e. ẇ
and ẅ) represent the velocity and acceleration at a specific time. On the
right side of Eq. (1), f is the external excitation as a function of time, q is
the lateral pressure applied at the plate surface while Nx and Ny are the

membrane forces distributed along the edges of plate and Nxy is the in-
plane shear force, respectively.

The simplest form of plate vibration analysis represents the free
vibration of unloaded rectangular plates with negligible damping. In
this case, the forcing terms at the right side and the viscous damping
term at the left side of Eq. (1) are set to zero and Eq. (1) reduces into Eq.
(2).
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There is an infinite number of natural frequencies (and mode
shapes) available from the closed form or numerical solutions to Eq. (2)
for various boundary conditions of rectangular plates [2]. As an ex-
ample, the closed form solution to Eq. (2) for rectangular plates with all
edges simply supported could be presented as Eq. (3).

= +ω π m L n B D ρh[( / ) ( / ) ] /m n,
2 2 2 (3)

In which m and n indicate the number of wave fronts along the
length (L) and breadth (B) of the rectangular plate for any particular
mode shape with natural frequency ωm,n. Amabili [2] verified the nat-
ural frequencies of 15 modes of vibration resulted from Eq. (3) ex-
perimentally for the case of a rectangular aluminium plate.

In another case, the free vibration of rectangular plates with neg-
ligible damping in presence of membrane forces was studied by Singh
and Dey [34] using the energy method. They discretized the total en-
ergy of free vibration of the system by replacing the derivative terms
with their Finite Difference equivalents and used a specific energy
minimization technique to solve the resulting eigenvalue problem. One
step further into the case of rectangular plate vibration with membrane
forces, Leissa and Kang [17] presented one of the first exact solutions
for the case of vibration and buckling of rectangular plates with a
particular set of boundary conditions in which two opposite edges of
the plate were clamped and the two other edges were simply supported.
A linearly variable in-plane load was considered to act at the simply
supported edges [17]. A similar case was presented by Wang et al. [40]
that simplified Eq. (1) into the form presented in Eq. (4) for the case of
free vibration of rectangular plates with membrane forces acting at
opposite edges along x axis [40].

⎜ ⎟⎜ ⎟
⎡

⎣
⎢

⎛
⎝

∂
∂

⎞
⎠

+ ⎛
⎝

∂
∂

⎞
⎠

⎤

⎦
⎥ + = ∂

∂
D w

x
w

y
ρhw N w

x
̈ x

2

2

2 2

2

2 2 2

2
(4)

Wang et al. [40] used the differential quadrature method to solve
this equation and calculated the vibration frequency for six mode
shapes of the rectangular plate (m = 1–3, n = 1 and 2). They estimated
the w(x,y,t) function by w(x,y)sin(ωt) and presented the in-plane force
Nx with a linear function. More recently, Akhavan et al. [1] studied a
similar case where closed-form solutions for the free vibration analysis
of Mindlin plates with uniform and linearly distributed in-plane loading
at two opposite edges with simply supported boundary conditions were

Nomenclature

B breadth of rectangular plate
c viscous damping constant
D flexural rigidity of plate material
E modulus of elasticity of plate material
f external excitation as a function of time
h thickness of plate
L length of rectangular plate
Nx membrane force in x direction
Ny membrane force in y direction
Nxy shear force in xy plane
q lateral pressure applied to the plate surface

q* non-dimensional lateral pressure
S plate aspect ratio
Δ maximum deflection at the center of rectangular plate
ω* non-dimensional frequency parameter
ω vibration frequency of plate
ν Poisson's ratio of plate material
ρ mass density per unit volume of material
w(x,y,t) dynamic displacement of a given point on plate surface

(x,y) at specific time (t)
ẇ velocity of any given point on plate surface (x,y) at spe-

cific time
ẅ acceleration of any given point on plate surface (x,y) at

specific time
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