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ARTICLE INFO ABSTRACT

Keywords: There are three kinds of fundamental deformation of thin-walled members, namely global, distortional and local
Thin-walled member modes. A set of identification criteria based mainly on the characteristics of forces rather than conventional
Buckling deformation shapes are proposed. The three newly defined deformation modes based on these criteria cover the
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entire deformation field of a thin-walled member, including those parts triggered by shear strains and transverse
membrane strains. Moreover, it is proved that the three deformation modes are orthogonal to each other with
respect to the elastic stiffness, which indicates the accuracy of the corresponding separation of the total strain
energy, the portion of which is then designated as the participation factor of the individual mode, which is
widely considered to be more physically appealing. Theoretically, the proposed criteria impose no restriction on
cross-sectional types or geometric/loading boundary conditions. The proposed criteria are utilised to decompose
the buckling results of several examples calculated by Finite Element Method. The resulting participation factors
of each buckling mode are compared with those from the base functions of the constrained Finite Stripe Method
(cFSM). The comparisons between the results of the two methods indicate the validity of the proposed criteria.

1. Introduction

The stability capacity of a thin-walled member is affected by the
physical non-linearity, imperfections and post-buckling strength re-
serve, and their effects are tied to the nature of the buckling classes,
namely the global, distortional and local modes. This demonstrates why
the correct identification and classification of the buckling modes, as
well as the accurate calculation of the corresponding critical loads, have
chief importance in determining the ultimate load-carrying capacity of
a thin-walled member [1].

Since general purpose numerical methods, such as the Finite
Element Method (FEM) and the Finite Strip Method (FSM), are not able
to segregate the various buckling classes [2], presently, the Generalised
Beam Theory (GBT) [3,4] and the constrained Finite Strip Method
(cFSM) [2,5] are widely used to perform the separation. Meanwhile,
researches remain active in the fundamental development of in-
corporating GBT and/or cFSM into the FEM models.

1.1. Generalised beam theory

The Generalised Beam Theory extended the traditional beam theory
to be able to take into account the cross-sectional deformation. In the

modal analysis, orthogonal deformation modes are defined by con-
structing one [3] (or a series of [6]) eigenvalue problem. Note that in all
the GBT basic stiffness matrices, including C(warping), B(transverse), D
(shear) stiffness, and coupling stiffness (H [3], F [3] and E [6]), the GBT
basic modes are only orthogonal about B and C (or only about C when
considering the shear strain [6]), since it is impossible to diagonalise
more than two matrices simultaneously [3].

1.2. Constrained finite strip method

In the cFSM, according to three principles [2], the buckling modes
of thin-walled members are divided into four deformation mode fa-
milies, which are the global (G), distortional (D), local (L) and other (O,
or ST) modes. Despite the practically negligible limitations inherited
from FSM (i.e. prismatic member, limited boundary conditions, etc.)
[2], a mass of extensions are undertaken in the domain of the cFSM or
inspired by it [5].

As for the orthogonalities among the basic modes, they are more
complex than those in GBT. Within each of the G, D, L. mode spaces, the
orthogonality between each two sub-modes is with respect to the elastic
stiffness matrix K. [2], which stems from a combination of plate
bending and membrane plane stress. However, the orthogonality
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Notation and terminology

(1)Basic factors:
n number of cross-sections (including ending sections),
k number of main nodes on a cross-section,

number of internal main nodes on a cross-section;
(2)Vectors:
A displacement vector,
4 load vector;

(3) Classification of the A and P vector components (denoted in subscript
form):

universal set (according to all DOFs),
translations or forces of the main nodes in the X-direction

°E

*mX

(longitudinal direction),
°my those of the internal main nodes in the Y-direction,
mz those of the internal main nodes in the Z-direction,

*mTr = ('mY) U ('mZ):
om = (*mx) U (*m1), the representative membrane subset of

the universal set (loaded DOFs in the integrated sub-de-
formation, also constrained DOFs in the local sub-de-
formation),

o o = o, the local-plate subset of the universal set (un-
loaded DOFs in the integrated sub-deformation, also un-
constrained DOFs in the local sub-deformation);

(4) Decomposition of A and P (denoted in the superscript form):

A or P of the original deformation, © = «& + !

those of the local sub-deformation,

those of the integrated sub-deformation, ' = & + &P 4 R
those of the global sub-deformation,

those of the distortional sub-deformation,

those of the rigid-body sub-displacement;

~ o @ = & O

(5) Functions for the resultant forces:

Fy»FyrF, cross-sectional resultant X-, Y- and Z- direction forces,
My, My, 4t cross-sectional resultant X-, Y- and Z- direction mo-
ments,

z bimoment on a cross-section.

between the G, D and L mode spaces is actually only with respect to the
membrane warping stiffness, as is shown in [8] as

/; ;- udA = 0, 6]

where u; and u; are axial translations in G and D respectively, and A is
the cross-section area. Note different strategies were used to achieve O/
ST mode, and multiple orthogonal schemes have been proposed. Please
refer to [2,7,8].

1.3. Constrained finite element method (cFEM)

The preliminary attempt of applying the constraining technique for
shell FEM was performed in [9], where M Casafont et al. developed a
method for the calculation of pure buckling loads by constraining the
nodal displacements of the FEM mesh with shell elements to force the
model to buckle in the individual GBT deformation modes. Due to the
differences of the constitutive relations and element interpolating
functions between the GBT and the conventional shell elements, the
pure buckling loads would not be the same if the DOF relations in the
FEM model were defined in full accordance with the GBT modal defi-
nition. An effective, meanwhile somewhat empirical, measure ne-
glecting some constraints in the FEM was introduced, in order to get the
resulting critical forces close to GBT.

Recent works [10-12] of cFEM aimed at the derivation and the
application of a novel shell finite element based on an unusual com-
bination of otherwise well-known shape functions [10]. The basic me-
chanical criteria of mode decomposition were essentially similar to
cFSM, but the change in longitudinal interpolation significantly ex-
tended the practical applicability of the method to a wide range of
practical problems [10-12].

1.4. FEM buckling mode identification method

S Adény [13] implemented the modal identification of the FEM
model buckling analysis by applying the modal basis from the cFSM to
simulate the FEM buckling analysis results of thin-walled members. A
significant computational effort was needed because the simulation was
conducted between two different interpolation patterns along the
length of a member: segmented low-order interpolation pattern of FEM
and orthogonal trigonometric basis of FSM. A process of reducing the

number of the cFSM base functions may be needed for the efficiency of
this method [13]. It was pointed out that significant errors may be
found in the simulate results when the half-wavelength of the FEM
buckling mode is shorter than the minimum half-wavelength of the
cFSM base functions or close to the FEM element length [13].

M Nedelcu et al. [14,15] formulated a fundamental deformation
mode identification method of general buckling modes provided by the
finite shell element analysis of isotropic thin-walled members based on
the orthogonality of the GBT modes. Regarding the method limitations,
the membrane transverse extensions and shear strains are neglected
following GBT classical assumptions. For some buckling modes, the
errors introduced by the GBT simplifying assumption of linear dis-
tribution of the warping displacements along the member cross-section
are not negligible [14].

In these two methods, the modal participation factors are de-
termined according to the displacement vector norms of the sub-de-
formations. The norm of the warping displacements is usually 1 or 2
orders of magnitude smaller than the norm of the transversal dis-
placements [14]. Therefore, strain energy is considered to be more
physically appealing [8]. It was also pointed out in [15] that a more
refined procedure should involve the computation of the modal parti-
cipation factor depending on the strain energy produced.

1.5. Research significance — a force-based method

In this paper, a set of mechanical criteria are proposed to divide the
entire deformation field of thin-walled members into the global (G),
distortional (D), and local (L) deformation mode classes, which are
orthogonal to each other with respect to stiffness of the member.

Compared with the FSM or GBT model, there are more DOFs in a FE
model with the same discretization of a cross-section, thus it is im-
possible to transform the whole FE displacement field into a cFSM or
GBT modal basis [8]. More basic mode functions compared to those
employed in the cFSM or GBT are introduced in this work to completely
partition the entire deformation field of the FE model — the first ob-
jective of this research.

The second objective of this research is to determine the mode
participation factors according to the strain energy produced. It should
be noted that only when the basic modes are orthogonal to each other
about the stiffness can their strain energies exhibit unambiguous
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