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A B S T R A C T

The present paper deals with the experimental and computational analysis of the deformation behaviour of the
metallic thin walled aluminium shells having dome-cone combined geometry. The specimens were tested on a
universal testing machine INSTRON under axial compression to identify their modes of collapse and to study the
associated energy absorption capacity. In experiments all the shell specimens were found to collapse with the
formation of an axisymmetric mode of collapse due to development of the associated plastic Zones in dome and
cones.

A Finite Element computational model of development of the axisymmetric mode of collapse is presented and
analysed, using a non-linear finite element code FORGE2. The proposed finite element model for this purpose
idealizes the deformation as axisymmetric. Six noded triangular elements were used to discretize the domain.
The material of the shell specimens was idealized as rigid visco-plastic. Experimental and computed results of the
deformed shapes and their corresponding load-compression and energy-compression curves were presented and
compared to validate the computational model. Typical variations of equivalent strain, equivalent strain rate and
nodal velocity distribution are presented to help in predicting the mode of collapse. On the basis of the obtained
results development of the axisymmetric mode of collapse has been presented, analysed and discussed.

1. Introduction

Metallic shells are often employed as energy absorbing elements to
safeguard the passengers inside the road vehicle, railway coach, aircraft
and ship. These shells include single geometry shells and sometimes
combined geometry shells. The main aim is to protect these structures
from serious damages while subjected to impact load in event of an
accident. These metallic shells may have different shapes which in-
clude; cylindrical, spherical and conical. The combined geometry me-
tallic shells may have combinations of spherical, cylindrical and conical
shapes. Such combined geometry shells are also widely employed in
different structures which include the nose-cone of aircrafts and pro-
jectiles and the shape of fuel and gas tanks and pressure hulls. The
energy absorption characteristics of combined geometry shells can be
customized by choosing a suitable combination of geometrical shape
and lie in the crushing behaviour of their constituents. During the im-
pact these shells are deformed with plastic regions and different modes
of collapse. Each mode of deformation develops with an independent
mechanics and has its own associated energy absorption capability.
These modes of deformation depend on many process parameters. In

general these parameters are history of loading, geometrical parameters
and material properties. In the past few decades, special effort has been
spent, on experimental [1,11,12,3,4], analytical [9,13] and numerical
[1,10,7,8] research to establish understanding on mechanics of de-
formation of shells and their associated energy absorbing capacity.
Mamalis et al. [10] and Gupta [5] presented experimental and nu-
merical studies on collapse of metallic cones having different geome-
trical properties. The true modes of deformation obtained during ex-
periments were compared with the computed ones and found in good
agreements. Both true and computed load-compression and energy-
compression curves were also comparable. For numerical investigations
Mamalis et al. [10] employed LS-DYNA finite element code while Gupta
[5] used FORGE2. Gupta et al. [3,4] studied the collapse of metallic
conical shells and domes by conducting experiments and numerical
investigations. The shells and domes were axially compressed with a
quasistatic and impact loading. The mechanics of collapse of metallic
hemispherical domes was also experimentally and numerically studied
by compressing them with a cylindrical mandrel [8] and a flat plate [8]
in the past. They found that the thick domes were collapsed by devel-
opment of axisymmetric while thin domes by non-axisymmetric mode
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of deformation. For numerical investigations they employed FORGE2
finite element code. They also found that the true collapse modes were
comparable with the computed ones. Numerically obtained load-com-
pression variations also matched well with the experimental load-
compression curves.

From the previous research it is clear that a good number of re-
search articles are available which covers the investigation of collapse
of cones and domes. But, hardly any study is available which covers the
collapse behaviour of shells having combined geometry of dome and
cone subjected to axial compression.

It is also clear from the literature that the finite element method has
been reached to the state maturity and capable to simulate the large
deformation problems. In this paper an attempt has been made to nu-
merically simulate the collapse behaviour of metallic shells having
cone-dome geometry using the finite element method. The computa-
tional model has been validated to compare its findings by performing
an experimental study also. The mechanics of development of mode of
collapse of the shells is also addressed with the help of experimental
and numerical findings.

2. Experiments

Specimens having dome and cone combined geometry were made
from commercially available aluminium sheets of thicknesses 3 mm,
3.5 mm and 4 mm. After procuring the specimens their wall thickness
and the other dimensions at different locations were measured. Fig. 1
shows the geometrical details at key points of the representative spe-
cimens DC1 (see Table 1). These specimens were tested after annealing.
The annealing of the specimens was done by soaking them at 300 °C for
60 min, and allowing them to cool in the furnace gradually for 24 h. An
INSTRON universal testing machine of 250 t capacity was employed for
experimentation. Specimens were centrally positioned on the bottom
platen of the machine with crown of the dome touching the top platen
of the machine. The upper platen was moved at a constant downward
velocity of 10 mm/min. The load-compression curves were recorded
with the automatic recorder of the machine. The deformed shapes of
the specimens at different stages of the compression process were
photographed. It was observed that during the whole collapse process
the mode of deformation was axisymmetric for all specimens. Fig. 2
depicts the photographs of the development of the mode of collapse at
few key stages. It is very clear that the mode of collapse remains ax-
isymmetric throughout its development process. The corresponding
experimental load-compression and calculated energy-compression
curves for these specimens are presented in Figs. 3(a) and (b) respec-
tively. Energy-compression variations are obtained by integrating the
load-compression curves.

3. Computational study

3.1. Governing equations

Finite element formulations for non-linear problems of plasticity are
classified into solid formulations and flow formulations. In the flow
formulation which is employed here, the elastic components of strain
are neglected as small compared to their plastic counterparts. An up-
dated Lagrangian reference system is employed wherein the velocities
are considered as the basic unknowns and the incompressibility con-
dition is incorporated using a penalty function. The overall deformation
is analysed in terms of a large number of deformation steps. Linearised
relationship between the stress and strain rate is assumed to exist
during each step and a quasi-steady state is assumed for each incre-
mental solution. The computational procedure is linked to a re-zoning
procedure.

Each deformation step is treated as a boundary value problem. At
the beginning of a given step, the problem domain Ω (i. e. the volume
occupied by the deforming specimen), the state of inhomogeneity and
the values of material parameters are supposed to be given or de-
termined already. The velocity vector v͠ is prescribed on a part of sur-
face SV together with traction on the remainder of surface Sf. Solution
to the incremental problem at any given time provides the velocity and
stress distributions that satisfy the governing equations in the body as
well as boundary conditions on the surface. The material is assumed as
homogeneous, isotropic, incompressible and rigid visco-plastic. The
details of formulations and solution technique can be found elsewhere
[6]. The constitutive relation for such a material is given by the Norton-
Hoff law as follows
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where S͠ij, ε ̇͠ ij, K and m represents the components of the deviatoric
stress tensor, strain rate tensor, material consistency and strain rate
sensitivity index respectively. The vi is the component of velocity in the
direction "i" at any point of the problem domain. The incompressibility
condition is written as below

=v Ωdiv 0 over the problem domain͠ (2)

where v͠ is the velocity vector at any point of the domain.
The material consistency K depends upon the thermo-mechanical

condition of the material. For most metals, the behaviour of K can be
approximated by means of the following multiplicative law:

= + aεK K (1 ) eβ T
o

/ (3)

where K0 is a constant, a is the strain hardening parameter, β is the
temperature sensitivity term and T is the absolute temperature. The
values of the parameters K0, a, β and m can be found by conducting
uniaxial tensile tests at different strain rates and temperatures. By sui-
table choice of these parameters, Eqs. (1) and (3) can approximate the
mechanical behaviour of most of the metals at different temperatures
and strain rate ranges. Since the compression was carried out at room
temperature, the constitutive equation for uniaxial case gets the form as
follows

= +σ K aε ε(1 ) ̇ot
m (4)

where σ is the equivalent stress for uniaxial case and
=

+KK ( 3 ) em β
ot o

1 /T

The friction between the workpiece and the tool is modelled with a
viscoplastic law

= − +
−τ α K aε ε v v(1 ) ̇ ͠ ͠f o f f

pm 1 (5)

where ||.|| indicates the norm of a vector, v͠f is the sliding velocity
between tube and platen, α is the friction factor and p is a material
parameter whose value is often taken equal to m. During theFig. 1. Typical dimensions of a specimen DC1.
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