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A B S T R A C T

Load paths represent the load flow in structures and are used to identify how the load is transferred throughout
the structure from points of application to support. The load function method is used in this paper for identi-
fication and visualization of load paths in plate and shell structures. Authors previously proposed a load function
method to calculate the load paths in plane elasticity problems. This work extends the previous formulation to
plates and shells. The significant difference from previous work is that the plates and shells equilibrium equa-
tions are not divergence free. Therefore, Helmholtz decomposition is used to decompose the stress field to
divergence and curl free components to calculate the load function and find load paths. Mathematical for-
mulations are presented to support the proposed method. Numerical and analytical examples show the appli-
cation of this method.

1. Introduction

Understanding how load flows through a structure can provide va-
luable knowledge about the performance and efficiency of the structure
and could provide an additional tool to measure the structural func-
tionality of a design. The various load path identification methods have
their own definitions and characterizations of “load paths”. In this
work, load paths are defined as curves that bound regions of constant
load flow in a structure.

Initial work on the theory of load paths sought to utilize major and
minor principle stress angles as a means of describing the direction of
load flow through the structure [1]. However, load paths and principle
stress angles vary in definitions. Firstly, principle stress angles describe
the angle at which no shear exists in an element. For an area of the
structure with high shear stresses, the difference between a vector
tangent to the load path and the principle stress angle could be as much
as 45 degrees [2]. Secondly, principle stress angles cannot be used to
describe a path of constant load flow, as they only represent direction at
localized points and give no information on the amount of load carried
in a particular region.

Kelly et al. introduced stress pointing vectors in the dominant and
complementary directions using stress resultants [3,4]. Load paths are
defined as tubes of constant force bounded by contours with variable
lateral spacing. Based on this definition, the equilibrium condition
implies that the normal and shear stresses tangent to the boundary of
the path do not contribute to the overall equilibrium in the x-direction
[5]. Further work presented examples of the application of load paths to

topology optimization [6].
Takahashi [7] and Sakurai et al. [8] presented methods to de-

termine internal load transfer by finding the change of compliance
energy inside a structure. The initial strain energy at each node is found
using the displacement method. By sequentially constraining individual
nodes, then enforcing the same displacements that were found initially,
new strain energies can be found at specific locations. The change in
compliance energy at a point is the difference between the new strain
energy and the original strain energy found at that location. The load
path can be found by taking the gradient of the compliance energy
scalar field then finding the resulting contour with the smallest gra-
dient. Recently, this method has been extended to rotational and
translational six degrees of freedom [9], and orthotropic composites
and nonlinear materials [10].

Harasaki and Arora introduced the concept of load transfer and
potential load transfer to determine load flow through a structure [11].
For a system of connected elements subjected to applied loads, the load
transfer is determined by first finding the displacements and corre-
sponding reaction forces for the structure. Then, by setting the stiffness
of the element in question to zero and applying the same displacements
found initially, a new set of reaction forces can be found. By taking the
difference in reaction forces, the load transfer through the unstiffened
element is calculated. This process is repeated for each element until
the load transfer in all the elements is determined. Potential load
transfer is a similar concept, however it also measures the effectiveness
of applying additional stiffness to the structure.

Experimental tests have been undertaken that use load path
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identification to map continuous fiber reinforcements onto composite
laminates. Li et al. used this methodology to align individual fibers
along the load path trajectories of a bolted composite joint [12]. Ex-
perimental testing showed a 33% increase in ultimate failure strength
and a twofold increase in joint efficiency. Tosh and Kelly performed
tests on open-hole and pin-loaded laminates manufactured with tra-
jectorial fiber steering [13]. Fibers were mapped based on principle
stress angles, load path trajectories, and a hybrid method that combined
both aforementioned methods. Using load path trajectories resulted in
an increase in failure loads and outperformed the laminates mapped
using principle stress angles.

The authors introduced a load function method to determine load
paths, and load flows between them in plane elasticity problems
[14,15]. An implicit function called a load function is introduced which
its level sets represents the load paths. Load flow between load paths
can be determined by subtracting the value of the load function on
consecutive load paths. The load function is derived from satisfying the
equilibrium and compatibility equations simultaneously. For the case of
equilibrium equations with in-plane and transverse loads, such as those
for the plate and shell problems, the loads need to be decomposed to
curl free and divergence free fields using Helmholtz's decomposition
[16–20]. Subsequently, the load function can be derived from the di-
vergence free load field. The proposed formulation leads to load paths
in x and y directions and the introduction of the z-direction load path
function derived from the z-direction equilibrium of the transverse
shear resultants

2. Methodology

In the authors’ previous work, the load function formulation is
presented for two-dimensional structures loaded in a state of plane
stress and is derived from the equilibrium equations in terms of stresses.
The stresses are written in terms of the load functions, and the load flow
is calculated using the load function level sets. However, for problems
with transverse loads in which the stress varies with thickness, multiple
load paths through the thickness exist. This problem is remedied by
writing the equilibrium equations based on the stress resultant equili-
brium equations, as in Eq. (1).
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where Nx , Nxy, and Ny, are in plane stress resultants, Qx and Qy are
transverse shear stress resultants, and px, py,and pz are applied tractions
on the surface in x, y, and z directions [21]. Next, the load field with
respect to the rectangular frame is defined as follows:
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Using this definition, the equilibrium equations can be written as:

∇ + =R p. 0 (3)

where =R R R R[ ]1 2 3 , and =p p p p[ ]x y z . The load vector field is de-
composed into divergence-free and curl-free components using the
Helmholtz decomposition:

= ∇ + ∇ ×R Φ ψ (4)

In Eq. (4) the first component (∇Φ ) is the irrotational component
R( )b , and the second component (∇×ψ) is the self-equilibrated or

solenoidal component R( )s . The solenoidal vector field admits load
functions ( =ψ Ψ Ψ Ψ[ ]x y z ) and accompanies load paths. The changes in ψ
between its two paths equals to the constant load flow of the totally self-
equilibrated stress resultants RΔ s that is transferred between those
two paths. Using the Helmholtz decomposition, first the divergence-free
component (Rs) is solved for the given boundary conditions and then
the curl-free component is determined as the residual (Rb=R−Rs).
Given a stress resultant field, Eq. (4) can be written as:

∇ × = −R ψΔ (5)

and the boundary condition associated with Eq. (5) is:
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The field lines of solenoidal components R( )s are the level sets of ψ.
After obtaining ψ, then solenoidal components can be written as:

= ∇ ×R ψs (7)

then by using the irrotational components R( )b , Φ can be found

∇ = = −Φ R R Rb s (8)

The integration of total differential of each load function
e g ψ, . . ,x between two consecutive paths (paths 1 and 2) is as follows:

Nomenclature

Nx Normal stress resultant in x direction
Ny Normal stress resultant in y direction
Nxy In plane shear stress resultant
Qx Transverse shear stress resultant
Qy Transverse shear stress resultant

px Pressure in x direction
py Pressure in y direction
pz Pressure in z direction
Ψx Load path function of x direction
Ψy Load path function of y direction
Ψz Load path function of z direction
ϕz Potential function for flat plates in bending

Fig. 1. The projection of shell forces onto the x-y plane.
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