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A B S T R A C T

Enlightened by the Caputo fractional derivative, the present study deals with a novel mathematical model of
magneto-thermoelasticity to investigate the transient phenomena for a fibre-reinforced thick plate having a heat
source in the context of three-phase-lag model of generalized thermoelasticity, which is defined in an integral
form of a common derivative on a slipping interval by incorporating the memory-dependent heat transfer. The
upper surface of the plate is free of traction having a prescribed surface temperature while the lower surface rests
in a rigid foundation and is thermally insulated. Employing Laplace and Fourier transforms as tools, the problem
has been solved analytically in the transformed domain. The inversion of the Fourier transform is carried out
using suitable numerical techniques while the numerical inversion of Laplace transform is done incorporating a
method on Fourier series expansion technique. According to the graphical representations corresponding to the
numerical results, conclusions about the new theory is constructed. Excellent predictive capability is
demonstrated due to the presence of memory dependent derivative, magnetic field and reinforcement also.

1. Introduction

In recent years, the theory of magneto-thermoelasticity which deals
the interactions among the strain, temperature and magnetic field has
drawn the attention of several researchers due to its extensive uses in
diverse fields, such as geophysics, for understanding the effects of the
earth's magnetic field on seismic waves, damping of acoustic waves in a
magnetic field, emission of electromagnetic radiations from nuclear
devices etc. [1].

Fibre-reinforced materials have extensive applications in aerospace
and automotive fields, as well as in sailboats, and notably in modern
bicycles and motorcycles, where their high strength-to-weight ratio is of
great importance. Materials such as resins reinforced by strong aligned
fibers exhibit highly anisotropic elastic behavior in the sense that their
elastic moduli for extension in the fibre direction are frequently the
order of 50 or more times greater than their elastic moduli in transverse
extension or in shear. The mechanical behavior of many fibre-
reinforced composite materials is adequately modeled by the theory
of linear elasticity for transversely isotropic materials, with the
preferred direction coinciding with the fibre direction [2,3]. In such
composites, the fibers are usually arranged in parallel straight lines.
However, other configurations are used. An example is that of
circumferential reinforcement, for which the fibers are arranged in
concentric circles, giving strength and stiffness in the tangential (or
hoop) direction.

The theory of generalized thermoelasticity has drawn attention of

researchers due to its applications in various diverse fields such as
engineering, nuclear reactor's design, high energy particle accelerators,
etc. Actually, as is well known, the term ‘generalized’ usually refers to
thermodynamic theories based on hyperbolic-type (wave-type) heat
equations, so that a finite speed for propagation of thermal signal is
admitted. Because of the experimental evidences in the support of
finiteness of the heat propagation speed. Very recently, employing the
generalized thermoelasticity theories, several remarkable studies have
been reported [4–6]. One of these modern theories, the so-called three-
phase-lag model, was proposed by Roychoudhuri [7]. According to this
model
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where T i, is the temperature gradient at a point P of the material at time
t τ+ T , qi is the component of heat flux at the point P in time t τ+ q, K is
the thermal conductivity of the material and K⋆ is additional material
constant [8,9]. The delay time τT is interpreted as that caused by the
microstructural interactions and is called the phase-lag of the tempera-
ture gradient. The other delay time τq is interpreted as the relaxation
time due to the fast transient effects of thermal inertia and is called the
phase-lag of the heat flux and τν is the phase-lag for thermal displace-
ment gradient.

Diethelm [10] has developed the Caputo [11,12] derivative to be:
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and f m( ) indicates the usual m− th order derivative of the function.
Differential equations of fractional order have been the focus of many
studies due to their frequent appearance in various application in fluid
mechanics, viscoelasticity, biology, physics, and engineering. The most
important advantage of using fractional differential equations in these
and other applications is their non-local property. It is well known that
the integer order differential operator is a local operator but the
fractional order differential operator is non-local [13].

From (2) and (3), it can be visualized that for any real number ζ, the
kernel K t ξ( − )ζ is a fixed function. But from the viewpoint of applica-
tions, different processes need different kernels to reflect their memory
effects, so the kernel should be chosen freely. In fact, the memory effect
of a real process basically occurs on a segment of time, i.e., on the
delayed interval t ω t[ − , ] (ω( > 0) indicates the time-delay). Enligh-
tened by these, the novel concept of derivative was initiated as the
“memory-dependent derivative” (MDD) to reflect the memory effect in
a distinct manner. One may state that the definition of MDD is more
intutionistic in realizing the physical significance and accordingly, the
corresponding memory-dependent differential equations are more
effective in real-world problems. Quite recently, introducing the
concept of MDD, a few pioneering works can be reviewed from the
following literatures [14–19].

Wang and Li [20] introduced a memory-dependent derivative, the
first order of function f which is simply defined in an integral form of a
common derivative with a kernel function on a slipping interval as
follows
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where ω( > 0) is the delay time and K t ξ( − ) is the kernel function in
which they can be chosen freely, such as K t ξ( − ) = 1, 1 − t ξ

ω
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. The kernel function can be understood as
the degree of the past effect on the present. In addition, if K ≡ 1,
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So, the common derivative d
dt

can be seen as the limit of Dω as
ω → 0.

The right side of (4) can be understood as mean value of f ξ′( ) on the
past interval t ω t[ − , ] with different weights. Generally, from the
viewpoint of applications, the memory effect requires weight

K t ξ0 ⩽ ( − ) < 1 for ξ t ω t∈ [ − , ), so the magnitude of the memory
dependent derivative is usually smaller than that of the common
derivative f t′( ). The variational principles, reciprocal theorems and
uniqueness of solutions due to memory dependence in a thermodiffu-
sive medium have been proved by El-Karamany and Ezzat [21].

Further, following the definition (4), the constitutive law for the
heat flux under memory-dependent 3P lag model can be represented as
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where ω1, ω2 and ω3 are the delay times due to 3P lag model.
The main objective of the paper is to study a two dimensional

problem of a magneto-thermoelastic fibre-reinforced thick plate in the
context of memory dependent generalized thermoelastic 3P lag model
in presence of heat source, from which GN III model can be obtained as
a particular case of the problem. The upper surface of the plate is stress
free with prescribed surface temperature while the lower surface of the
plate is laid down on a rigid foundation and is thermally insulated. The

governing equations are solved in Laplace-Fourier double transform
domain by applying Laplace and Fourier transform techniques. The
inversions of double transform has been done numerically. The
numerical inversion of Laplace transform is done by using a method
based on Fourier series expansion technique [22]. Numerical computa-
tion have been done for Magnesium (Mg) and the results are presented
graphically for different theories (three-phase-lag model and GN III
model). Excellent predictive capability is demonstrated due to the
influence of the magnetic field, the presence of reinforcement and
memory-dependent derivative also.

2. Formulation of the problem

We consider an infinite fibre-reinforced thermally conducting thick
plate with spatially varying heat source at an uniform reference
temperature T0 in the undisturbed state. The adjacent space is assumed
to be permeated by a uniform magnetic field H acting perpendicular to
the boundary z = 0. This produces an induced magnetic field h and
induced electric field E which satisfies the linearized equations of
electro-magnetism and are valid for slowly moving media. The electro-
magnetic field is governed by the Maxwell's equation as follows

ε
μ

μ

h J E
E h

E u H
h

curl = + ˙ ,
curl = − ˙ ,

= − (˙ × ),
div = 0.

0

0

0
(7)

We set H H h= +0 , where HH = (0, 0, )0 0 . The perturbed magnetic
field h is so small that the product of h and u and their derivatives can
be neglected for linearization of field equations. Here, J is the electric
current density vector, u is the displacement vector. μ0 and ε0 are the
magnetic permeability in vacuum and electric permeability in vacuum,
respectively.

The upper surface of this medium is taken traction free and
subjected to a known temperature distribution. The lower surface of
the plate is laid down on a rigid foundation and is thermally insulated.
Let the faces of the plate be the planes x h= ± , referred to a rectangular
set of cartesian co-ordinates axes Ox Oy, and Oz as shown in Fig. 1. We
shall consider two dimensional deformation of the plate parallel to xy
plane.

The displacement vector u and temperature T can be taken in the
following form

u x y t v x y t
T T x y t
u = ( ( , , ), ( , , ), 0),

= ( , , ). (8)

The constitutive equation for a fibre-reinforced linearly thermo-
elastic anisotropic medium whose preferred direction is that of a unit

Fig. 1. Co-ordinate system and geometry of the plate with boundary conditions.
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