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A B S T R A C T

This paper is concerned with the smart constrained layer damping (SCLD) treatment of laminated composite
shells with variable thickness undergoing geometrically nonlinear vibrations. Three dimensional fractional de-
rivative model (FDM) has been implemented for modelling the constrained viscoelastic layer of the SCLD
treatment. The constraining layer of the SCLD treatment is made of vertically/obliquely reinforced 1–3 piezo-
electric composites (PZCs) and acts as the distributed actuator. The strain-displacement relations are based on
the simplified Novozhilov nonlinear shell theory to introduce the geometric nonlinearity in the large amplitude
vibrations of the variable thickness shells. A three dimensional smart nonlinear finite element (FE) model has
been developed for carrying out this analysis. Several numerical results are presented to check the accuracy of
the present three-dimensional FDM for analyzing the passive and active control authority of the SCLD patch. Also
the efficacy of the activated SCLD patch in controlling geometrically nonlinear vibration is computed for variable
thickness shells and compared with shells of constant thickness.

1. Introduction

The demand for the use of lightweight composite shell structures
has been continuously increasing in aerospace, automotive and marine
industries. In the past researchers have theoretically and experimen-
tally studied the linear and geometrically nonlinear vibrations of thin
and moderately thick composite shell structures [1–8] with constant
shell thickness along both the principal directions of the domain. More
recently plate and shell structures with variable thickness are gaining
lot of attention as they may exhibit better performance under various
loading conditions compared to shells with constant thickness [9].
Further, a variation in thickness offers variation in stiffness and the
shape of the structure can be optimized while the weight remains un-
altered. Back in 1970, Lord and Yousef [10] started the analytical and
experimental study on the effect of thickness variation in case of iso-
tropic annular and circular thin plates. They used a simple FE model
considering the plate to be composed of several concentric rings with
constant thickness. Later, several researchers have shown interest to
study the static and dynamic behavior of variable thickness plates and

shells [11–26]. Sherbourne and Murthy [11] analytically computed the
symmetrical bending of orthotropic circular plates with variable
thickness. Sinharay and Banerjee [12] investigated large-amplitude free
vibrations of thin elastic shallow spherical and cylindrical shells with
variable thickness for various edge conditions. An energy method based
on the Rayleigh-Ritz procedure has been used by Sankaranarayanan
et al. [13] to perform free vibration analysis of laminated conical shells
with a linear variation of thickness in the meridional direction. Sivadas
and Ganesan [14] employed a semi-analytical FE method to determine
the natural frequencies of thin cylindrical shells with linear and quad-
ratic thickness variation along the axial direction. Suzuki et al. [15]
presented an analytical solution procedure to analyse free vibrations of
rotating circular cylindrical shells with variable thickness in the axial
direction. A comprehensive study on the modelling of vibration analysis
of variable thickness cantilevered shallow cylindrical shells of rectan-
gular planform is carried out by Liew and Lim [16]. Leissa and Kang
[17] performed free vibration analysis of moderately thick and thick
paraboloidal shells with variable thickness. They obtained numerical
results for a variety of shallow and deep shells having uniform or
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variable thickness. In another work, Kang and Leissa [18] presented a
three-dimensional method of analysis of solid paraboloids and para-
boloidal shells of revolution with variable thickness. Zenkour [19]
analytically investigated the deformation and stresses in composite
circular cylinders of axially variable thickness. A numerical-analytic
approach was proposed by Budak et al. [20] to study the free vibrations
of orthotropic shallow shells. They also reported the influence of the
mid-surface curvature and variable thickness on the behavior of dy-
namic characteristics of the structures. Duan and Koh [21] analytically

obtained the benchmark solutions for the cylindrical shells with
thickness varying monotonically in arbitrary power form. Kurpa and
Chistilina [22] studied natural vibrations of orthotropic shells with
varying thickness using the R-function and Ritz methods. Efraim and
Eisenberger [23] numerically determined natural frequencies and mode
shapes of thick spherical shell segments with linearly varying thickness
and different boundary conditions based on dynamic stiffness method.
Amabili [24] presented a new nonlinear higher-order shear deforma-
tion theory for large-amplitude vibrations of laminated doubly curved

Nomenclature

Aj Grünwald constant
C[ ]b

k , C[ ]s
k Transformed elastic coefficient matrices of the substrate

shell with respect to the laminate coordinate system (GPa)
+C[ ]b

N 1 , +C[ ]b
N 1 , +C[ ]s

N 1 , +C[ ]s
N 1 Elastic coefficient matrices of the

viscoelastic material (MPa)
+C[ ]b

N 2 , +C[ ]s
N 2 , +C[ ]bs

N 2 Elastic coefficient matrices and elastic cou-
pling matrix of the 1–3 piezocomposite material (GPa)

C[ ]n Global active damping matrix (Ns/m)
Dz Electric displacement along the z-direction (C/m2)
d{ }t , d{ }r Generalized translational and rotational vectors, respec-

tively
d{ }t

e , d{ }r
e Nodal generalized translational and rotational vectors,

respectively
E0, ∞E Relaxed and non-relaxed elastic moduli of the viscoelastic

material (MPa)
E1, E2, E3 Modulus of elasticity of the composite substrate shell

(Gpa)
Ez Applied electric field component in the z direction (C/m

or V/m)
e{ }b , e{ }s Piezoelectric coefficient matrices (C/m2)
F{ }e Elemental load vector (N)

+F{ }n 1 Global nodal force vector at (n+1)th time step (N)
F{ }tn

e , F{ }rn
e Elemental memory load vectors due to the viscoelastic

material (N)

+F{ }tn n 1, +F{ }rn n 1 Global viscoelastic memory load at (n+1)th time
step (N)

+F{ }n n 1 Global nonlinear viscoelastic load vector at (n+1)th time
step (N)

F{ }tpn
e , F{ }rp

e Elemental electro-elastic coupling vectors (C/m)
{Ftpn}, {Frp} Global electro-elastic coupling vectors (C/m)
G0, ∞G Relaxed and non-relaxed shear moduli of the viscoelastic

material (MPa)
G12, G13, G23 Shear modulus of the composite substrate shell (Gpa)
h α α( , )x y , hv, hp Variable thickness of the shell, constant thickness

of the constrained viscoelastic layer and the constraining
1–3 piezoelectric composite layer, respectively (m)

h0 Reference thickness of the variable thickness shell (m)
+hk 1, hk Thickness co-ordinates z of the top and the bottom sur-

faces of the kth layer (m)
Id Performance index
kc Shear correction factor
Kd Control gain
K[ ]ttn

e , K[ ]trn
e , K[ ]rtn

e Elemental nonlinear stiffness matrices (N/m)
K[ ]ttn , K[ ]trn , K[ ]rtn Global nonlinear stiffness matrices (N/m)
K[ ]rr

e Elemental linear stiffness matrix (N/m)
K[ ]rr Global linear stiffness matrix (N/m)
K[ ]n Global nonlinear stiffness matrix (N/m)

Lx , Ly Curvilinear lengths of the substrate shell along αx and αy

axis, respectively (m)
M[ ]e , M[ ]r

e elemental mass matrices (kg)
M[ ], M[ ]r Global mass matrices (kg)

N Number of layers in substrate shell
Nt Number of terms in Grünwald series
N[ ]t

s , N[ ]r
s Shape function matrices

R1, R2 Principal radii of curvature of the middle surface of the
shell (m)

u, v, w Displacements along the αx , αy and z directions, respec-
tively (m)

u0, v0, w0 Displacements of a point on the reference mid-plane along
the αx , αy and z directions, respectively (m)

+Vn 1 Applied voltage across the thickness of the piezoelectric
layer (Volt)

+X{ }n 1, +X{ }r n 1 Global nodal generalized displacement vectors
α α zx y Generic laminate co-ordinate system
α Fractional order of the time derivative ( < <α0 1)
α̂r , ς̂r , ω̂r Three positive constant parameters of the GHM model
βx , βy Generalized rotations of the normal to the middle plane of

the viscoelastic layer (rad)
βz Second order derivative of the transverse displacement in

the overall structure with respect to the thickness co-
ordinate (rad/m)

γxy
k In-plane shear strain at any point in the kth layer

γxz
k , γyz

k Transverse shear strains at any point in the kth layer

εx
k, εy

k, εz
k Normal strains along the αx , αy and z directions in the kth

layer, respectively
ε{ }b

k , ε{ }s
k Bending and transverse strain vectors

εx
ul, εy

ul, εz
ul Uniaxial normal strains along the αx , αy and z directions,
respectively under uniaxial loading alone

+ε{ }b
N 1 , +ε{ }s

N 1 Anelastic bending and transverse strain vectors
∈33 Dielectric constant of the piezoelectric material
λx , λy Generalized rotations of the normal to the middle plane of

the PZC layer (rad)
θk Fiber orientation angle in the kth layer of the shell with

respect to the αx-axis (rad)
θx , θy, θz Generalized rotations of the normal to the middle plane of

the substrate shell (rad)
ρk Mass density of the kth layer (kg/m3)
σx

k, σy
k, σz

k Normal stresses along the αx , αy and z directions in the kth
layer, respectively

σxy
k In-plane shear stress at any point in the kth layer

σxz
k , σyz

k Transverse shear stresses at any point in the kth layer
τ Relaxation time of the viscoelastic material (s)
ψ Piezoelectric fiber orientation in the vertical plane of the

PZC layer with respect to the z-axis (rad)
ωl Linear natural frequency of the overall structure (rad/s or

Hz)
ωnl Nonlinear natural frequency of the overall structure (rad/

s or Hz)
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