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A B S T R A C T

This paper presents an improvement of the first-order Generalised Beam Theory (GBT) formulation proposed in
[1], which was developed for naturally curved thin-walled members with deformable cross-section and whose
undeformed axis is a circular arc with no pre-twist. In this paper, the restrictions on the cross-section shape are
removed (in the previous paper only rather simple cross-sections were dealt with) by proposing and discussing a
novel and systematic procedure to obtain the cross-section deformation modes for arbitrary flat-walled cross-
sections (open, closed or “mixed”). The proposed procedure retains the nomenclature of the deformation mode
subsets defined in [2,3], even though the kinematic constraints employed to subdivide the modes are much more
complex than for prismatic members. A set of representative illustrative examples is presented, involving
complex local-distortional-global deformation, to show the efficiency of the proposed procedure when used
together with a standard displacement-based GBT finite element. It is demonstrated that extremely accurate
results are obtained with rather few DOFs and that the GBT modal solution provides in-depth insight into the
structural behaviour of naturally curved members.

1. Introduction

Generalised Beam Theory (GBT) is a thin-walled bar theory that
incorporates cross-section in-plane and out-of-plane (warping) de-
formation through the addition of hierarchical and structurally mean-
ingful cross-section DOFs, the so-called “cross-section deformation
modes”. GBT was proposed and initially developed by Schardt and co-
workers [4,5] 1, being presently well-established as an efficient, ver-
satile, accurate and insightful approach to assess the structural beha-
viour of prismatic thin-walled bars (see, e.g., [6–8] 2).

Allowance for cross-section deformation in curved thin-walled bars
is a subject with significant practical interest. The so-called classical
formulations for bridges employ a single distortional deformation mode
[9,10] and are solved using a beam on elastic foundation analogy. For
closed box girders, this distortional deformation mode was recently
shown to be identical to the so-called Vlasov distortional mode ob-
tained with GBT [11]. Nevertheless, examples of this type of approach
are still being employed (see e.g. [12] and references therein). In [13], a
formulation is presented for curved beams that includes warping modes
to account for shear deformation due to bending and torsion. However,

cross-section in-plane deformation is not considered.
Quite recently, in [1], the authors have proposed, for the first time,

a linear GBT formulation for elastic thin-walled bars with circular axis
(without pre-twist). This formulation extends the classic prismatic case
— thus can handle virtually arbitrary cross-section deformation —
while still making it possible to incorporate the usual GBT strain as-
sumptions: (i) Kirchhoff's (thin plate), (ii) Vlasov's (null membrane
shear strains) and (iii) null membrane transverse extensions. The
equilibrium equations were derived in terms of both GBT modal ma-
trices and stress resultants and it was demonstrated that, for the so-
called “rigid-body” deformation modes (extension, bending and tor-
sion), the equations coincide with those of the Winkler (in-plane case
[14]) and Vlasov (out-of-plane case [15]) classical theories. A standard
displacement-based GBT finite element was employed to show that
complex local-global deformation can be efficiently and accurately
captured with the proposed formulation.

The formulation presented in [1] can handle all types of deforma-
tion modes, but their systematic determination for complex cross sec-
tions was postponed to the present paper. This was due to the fact that
the so-called “natural Vlasov modes” (those complying with Vlasov's
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assumption) need to be calculated using a constraint that is significantly
more complex for curved bars. For this reason, only cross-sections
without Vlasov distortional modes were addressed. To obtain the rigid-
body modes (extension, bending and torsion) for open sections, a two-
step procedure was employed, where (i) the warping functions for
prismatic bars were first calculated with the GBTUL program3 and,
subsequently, (ii) the cross-section in-plane displacements were calcu-
lated from the warping functions, using Vlasov's assumption for curved
bars. For closed sections, the extension and bending modes were ob-
tained in the same way, but the torsion and shear distortional modes for
prismatic bars were directly employed.

The present paper completes the previous work by establishing a
systematic procedure for the determination of all cross-section de-
formation modes for members with circular axis, extending the con-
cepts introduced for the prismatic case in [2,3,16]. In particular, the
deformation mode categorisation employed in these papers is preserved
and all types of flat-walled cross-sections are considered, namely open,
closed or “mixed” (with open and closed parts). The fact that the de-
formation modes are hierarchical and subdivided according to specific
kinematic constraints renders the GBT analyses quite efficient, (i)
leading to accurate solutions with only a few deformation modes and
much less DOFs than those typically required in shell finite element
models, and (ii) providing in-depth insight into the mechanics of the
problem under consideration, through the modal decomposition of the
solution.

The outline of the paper is as follows. First, Section 2 reviews the
fundamental equations of the GBT formulation for naturally curved
beams, as proposed in [1]. Section 3 presents the proposed procedure
for calculating the cross-section deformation modes. The Vlasov and
null membrane transverse extension assumptions are introduced and
employed to divide the modes, as this contributes decisively to the
overall efficiency of the formulation, by reducing significantly the
number of modes required to achieve accurate solutions. Next, in Sec-
tion 4, a set of representative numerical examples, involving complex
local-distortional-global deformation patterns, is presented and solved
using a standard displacement-based GBT finite element. For compar-
ison purposes, solutions obtained with refined shell finite element
models are also given. The paper closes in Section 5, with the con-
cluding remarks.

The notation follows closely that introduced in [2,17,18]. Moreover,
the subscript commas indicate derivatives (e.g., = ∂ ∂f f x/x, ), although
the prime is reserved for a derivative with respect to the beam axis arc-
length X, i.e. ′ = ∂ ∂X(·) (·)/ . Finally, superscripts (·)M and (·)B designate
plate-like membrane and bending terms, respectively.

2. First-order GBT for members with circular axis

In this section, the formulation presented in [1] is briefly reviewed,
for completeness of the paper. Fig. 1 shows a naturally curved thin-
walled member with flat-walled cross-section (left) and a 2D view of a
single wall (right). The global cylindrical coordinate system is (θ Z R, , ),
X is the member axis arc-length coordinate, lying on the =Z ZC plane
and having constant curvature equal to R1/ C, where C is an arbitrary
cross-section “centre” (the intersection of the member axis with each
cross-section). Finally, the wall local axes are defined by (x y z, , ), where
y and z stand for the wall mid-line and through-thickness directions,
respectively, and x is concentric to X.

The usual GBT variable separation technique for the membrane
displacement components makes it possible to write
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where u v w, ,k k k are the mid-line displacement components of de-
formation mode k along the local axes (x y z, , ), respectively, D is the
number of modes, ϕk are the corresponding amplitude functions and
u v w ϕ, , , are column vectors collecting u v w ϕ, , ,k k k k, respectively. As
shown in [1], using Kirchhoff's thin plate assumption, the displacement
field in the local axes can be expressed as
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with the auxiliary matrix
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where Ky and Kz are the beam axis curvatures along the wall local axes,
i.e.,
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and a mid-line parameter was introduced,
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where R is the mid-line radius (see Fig. 1, which shows φ, R and R for
an arbitrary point P).

The strains are subdivided into membrane and bending components,
being given by
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where ξij
(·) are column vectors reading
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y z y y y y z32 , , (19)3 This program is freely available at http://www.civil.ist.utl.pt/gbt.

N. Peres et al. Thin-Walled Structures 127 (2018) 769–780

770

http://www.civil.ist.utl.pt/gbt


Download	English	Version:

https://daneshyari.com/en/article/6777906

Download	Persian	Version:

https://daneshyari.com/article/6777906

Daneshyari.com

https://daneshyari.com/en/article/6777906
https://daneshyari.com/article/6777906
https://daneshyari.com/

