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A B S T R A C T

This paper investigates local elastic buckling of thin long cylindrical shells under external pressure. Based on
Donnell's and Sanders' theories of thin shells and von Karman nonlinearity assumptions, the potential energy is
derived. The buckling load and curves of the static equilibrium path are obtained using the Ritz method. The
results are validated with the existing ones in the literature. Furthermore, the case where the pressure is per-
pendicular to the deformed state is compared with a dead loading. It is demonstrated that the former yields a
lower critical pressure in both shell theories.

1. Introduction

Cylindrical shells are widely used in many engineering structures
such as aircraft, spacecraft, nuclear reactors, cooling towers, pressure
vessels, pipelines, and offshore platforms. Since these structures are
usually thin, buckling is the controlling failure mode. Hence, it is es-
sential to understand the buckling behavior of cylindrical shells prop-
erly and establish appropriate design methods. In this study, the at-
tention is dedicated to long cylindrical shells with diameter to thickness
ratio (D t/ ) larger than 40, for which collapse occurs by means of an
elastic flattening before the pipe material reaches its yield strength [1].

Brayan [2] was the pioneer in deriving an expression for the col-
lapse pressure of thin long tubes free from any form of end constraints.
Timoshenko and Gere [3] presented an equation for elastic buckling of
long cylindrical shells subject to external pressure. They investigated
the buckling mechanism of a ring subject to external pressure. Based on
the plane strain assumption, they further extended their solution to
cylindrical shells with free edges as well as to infinitely long cylindrical
shells. They presented the buckling pressure, pcr of the cylindrical shell
as follows [3]:
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where R, t , E , and ν denote the radius, the thickness, the Young's
modulus, and the Poisson's ratio, respectively. The formula presented
by Timoshenko and Gere is widely used for the design of long cylind-
rical shells as in DNV-OS-F101 [4] to calculate the elastic collapse
pressure of the pipe.

Much work has been dedicated to determining the collapse pressure
of a circular cylindrical shell with finite length (less than critical length)

under external pressure (see [2–15], and the references therein). The
critical length is the minimum length of a cylindrical shell for which the
collapse pressure is independent of the end boundary conditions and
any further increase in length. The following formula was first proposed
by Southwell [5] for the critical length:

=L Kd d t/c (2)

where d is the diameter of the cylindrical shell and
= − = =K π ν forν(4 6 1 )/27 1.11( 0.3)2 . Cook's experimental tests [5]

verified the formula but proposed a value of =K 1.73 instead. Von
Mises [5,6] derived an equation for the collapse pressure of simply
supported thin short tubes exposed to lateral pressure. Later, he [5,7]
extended his work to include both lateral pressure and axial load. Based
on a throughout review on the relevant theoretical and empirical in-
stability formulas in the literature, Windenburg and Trilling [5] pro-
posed a formula for calculating the collapse pressure of thin cylindrical
shells with a length less than the critical one subject to uniform external
pressure. Sturm and O'Brien [8] determined the collapse pressure for
simply supported and clamped thin cylindrical shells subject to uniform
external pressure. In their study, they accounted for the plastic beha-
vior, out of roundness of the cylinder, and ring stiffening effects. Sturm
[9] studied the behavior of thin-walled tubes under uniform external
pressure experimentally and compared his results with the existing
theories. Yamaki and Otomo [10] performed experimental studies on
the post-buckling behavior of circular cylindrical shells subject to hy-
drostatic pressure by using test specimens with a radius equal to
100 mm, a length ranging from 23 mm to 165 mm, and a thickness
equal to 0.25 mm. Based on the nonlinear Karman-Donnell's equations,
Shen and Chen [11] studied the effects of external pressure on buckling
and post-buckling behavior of cylindrical shells with clamped edges
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using boundary layer theory and a singular perturbation method. Based
on Kirchhoff-Love assumptions, Cheung and Zhu [12] investigated the
post-buckling of circular cylindrical shells with finite length under
uniform external pressure using the spline finite strip method. Dyau and
Kyriakides [13] experimentally and numerically addressed the collapse
mechanism in cylindrical shells under external pressure where both
geometric and material nonlinearities were considered. Based on
Flügge's stability equations, Vodenitcharova and Ansourian [14] stu-
died the buckling behavior of circular cylindrical shells subject to ex-
ternal pressure. They showed that their length dependent model gave a
slightly lower buckling pressure than that given by Timoshenko and
Gere [3] (see Eq. (1)). Pinna and Ronalds [15] derived the buckling
load of cylindrical shells with different boundary conditions under
hydrostatic load via an eigenvalue analysis. More recent investigations
on the subject have considered other parameters affecting the buckling
mechanism such as initial imperfection [16,17], thickness variation
[18–21], and time dependent external pressure [22].

In comparison with the available analyses on finite length cylind-
rical shells, the subject of local buckling of long cylindrical shells under
external pressure has attracted less attention. In infinitely long cylind-
rical shells under external pressure, local buckling occurs and a certain
length along the longitudinal axis of the shell experiences radial de-
flection, which is clearly observed in full-scale test specimens [23] (see
Fig. 1). Therefore, extending the solution for buckling of a ring to the
case of a long cylindrical shell using the plane strain assumption is
questionable, since it is assumed that the whole cylindrical shell de-
forms into an elliptical cylinder. Fraldi and Guarracino [24] also
pointed out this deficiency and presented an analytical formulation for
the capacity load of circular rings under external pressure, which ac-
counts for the onset of plasticity and geometric imperfections. Xue and
Hoo Fatt [25] studied elastic buckling of a non-uniform long cylindrical
shell subject to external pressure and proposed a set of formulas for
symmetric and anti-symmetric buckling modes. Later, based on Don-
nell-Mushtary's shell theory and using the Ritz method along with some
simplifying assumptions, Xue [26] managed to present a formula for the
buckling pressure of long cylindrical shells under external pressure. The
buckling pressure predicted by Xue's formula [26] was 33% higher than
the one predicted by Timoshenko and Gere in Eq. (1). In order to
overcome this discrepancy, Xue et al. [27] considered the influence of
the initial curvature of the cylindrical shells on Karman-Donnell's
equations (they considered an extra term equal to

− − ≈ −R w R w R1/ 1/( ) / 2 in the equation for the circumferential cur-
vature) and showed that taking the initial curvature into account, has a
significant influence on the load carrying capacity and is in agreement
with Timoshenko's result (Eq. (1)).

In the present study, based on the classical Donnell's and Sanders'
theories of shells and von Karman nonlinear strain-displacement rela-
tions, the elastic collapse pressure and post buckling behavior of thin
long circular cylindrical shells under uniform external pressure is in-
vestigated adopting the Ritz method. Most importantly, it is shown that
taking into account the perpendicularity of pressure to the deformed
state (instead of a dead load), decreases the collapse pressure and
achieves a closer agreement with the empirical results as well as that of
Timoshenko's. In addition, the static equilibrium path and mode shapes
are studied.

2. Formulation

A circular cylindrical shell of mean radius R, thickness t , and length
L2 is considered. The geometry of the shell and the curvilinear co-
ordinate system (x, y, z) considered at the mid-surface of the shell is
shown in Fig. 2. The displacements of an arbitrary point at the mid-
surface of the shell are denoted by u, v, and w in the axial (x), cir-
cumferential y( ), and radial z( ) directions, respectively.

2.1. Strain-displacement relations

The strains and the changes in curvature of the mid-surface in the
classical Donnell's and Sanders' theories of shells are as follows [28,29]:
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where λ is a coefficient taking on the value of either zero or one. In
order to have a Donnell's or Sanders' theory, the coefficient is set, re-
spectively, =λ 0 or =λ 1. The strain components εxx, εyy, and εxy at an
arbitrary point of the shell are given by:

= + = + = +ε ε zκ ε ε zκ ε ε zκ; ;xx xx xx yy yy yy xy xy xy
0 0 0 (5)

where z is the distance from the arbitrary point of the shell to the mid-
surface.

2.2. Stress-strain relations

Based on the classical thin shell theory (where the transverse normal
stress is neglected), the stress-strain relations in a plane stress state for a
homogeneous isotropic elastic body are [28]:
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The stress and bending moment resultants for a thin cylindrical shell
are defined as:

∫=
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Upon substituting Eqs. (5) and (6) into Eq. (7), the stress and
Fig. 1. Photograph of a 20-in., × 80 pipe collapsed under external pressure (courtesy C-
FER Technologies) [23].

Fig. 2. The geometry of the shell and the curvilinear coordinate system.
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