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A B S T R A C T

The conventional numerical approximation of Mindlin plate equations can lead to erroneous solutions for thin
plates. The so-called shear-locking problem has been well studied in the context of the finite element method
(FEM) whereas the development of numerical formulations for its successful elimination in meshfree methods is
still a subject of intensive research. This paper studies the effectiveness of some of the most commonly adopted
techniques for the reduction of shear-locking and presents the application of a shear-locking-free formulation
based on first-order Mindlin plate theory. In this modified formulation, the shear strains are incorporated as
degrees of freedom (DOFs) in lieu of the rotational DOFs in the conventional Mindlin theory formulation. A
straightforward transformation technique is presented for the enforcement of boundary conditions and com-
parisons are made with available analytical and numerical solutions. The generalised reproducing kernel particle
method (RKPM) is adopted as the numerical tool and a series of numerical examples are presented to demon-
strate the accuracy and performance of the presented method.

1. Introduction

The problem of shear-locking in the numerical implementation of
Mindlin plate theory is encountered as the plate thickness becomes
small and approaches the thin plate limit. Contrary to early expecta-
tions, direct applications of the meshfree methods to Mindlin plate
problems in the thin plate limit also suffer from the drawback of shear-
locking [1]. It has been shown that the cause of this problem is rooted
in the inability of the numerical formulation to achieve pure bending
states without producing fictitious (spurious) shear deformations [2].
Shear-locking has been extensively studied in the context of the finite
element method (FEM) and various strategies have been proposed to
alleviate the problem. Reduced integration methods [3,4], assumed
strain methods [5,6], mixed interpolation of tensorial components
(MITC) methods [7,8] are amongst the techniques that have been
widely utilised to eliminate shear-locking. Although being helpful in the
context of element-based methods, some of these techniques have
shown to be impractical and in some cases unsuitable for meshfree
methods [9].

The meshless methods employed on the weak-form formulation can
be categorised into two main groups [10], namely the approximant
meshless methods [11–16] and the interpolant methods [17–23]. In
general, the approximant methods produce smoother variable fields but

their shape functions do not fulfil the Kronecker delta property. Con-
sequently, in this group of meshless methods direct enforcement of
boundary condition is not possible and special treatments of shape
functions or governing equation are required to satisfy the prescribed
conditions. The interpolant meshless functions were developed in re-
sponse to this drawback and are able to produce shape functions that
possess the Kronecker delta property [24]. Both types of meshless
methods have been employed to Mindlin plate problems in the thin
plate limit and in some of these studies the shear-locking phenomenon
was encountered. In the meshfree literature, alternative techniques
have been proposed to overcome the shear-locking problem. A brief
review of the related developments for meshfree methods is presented
in the following.

In a similar approach that mimics the reduced integration technique
in FEM, nodal integration can be employed to relieve locking. But as
shown by Beissel and Belytschko [25], underintegration of the weak
form can cause spurious singular modes to occur requiring stabilisation
terms to be added to the potential energy functional. In order to avoid
shear-locking, Dinis et al. [26] adapted the selective integration to the
natural neighbour radial point interpolation method (NNRPIM) and
showed that it can strongly attenuate the occurrence of shear-locking.
Liu et al. [27] proposed the conforming radial point interpolation
method for static and free vibration analysis of plates, and employed
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strain smoothing stabilisation techniques for nodal integration. Cui
et al. [28] utilised the cell-based smoothed radial point interpolation
method (CE-RPIM) [28] for analysis of shear deformable plates and
used only one integration point in each cell to overcome shear-locking.
Wang and Chen [2] utilised curvature smoothing stabilisation in the
nodally integrated weak form to remedy shear-locking in the limit of
thin plate. Cui et al. [29] employed the discrete shear gap (DSG) method
[30] to mitigate the shear-locking effects. Belinha et al. [24,31] ana-
lysed thick and composite laminated plates using the natural radial
element method (NREM) and employed a “non-centred” integration
technique to attenuate shear-locking. Donning and Liu [32] employed
the derivatives of the approximation function used for interpolation of
translational (DOFs), to approximate rotational DOFs. This approach,
which is known as “matching fields” or “unequal order of interpola-
tion”, was later extended for the element free Galerkin method (EFGM)
by Kanok-Nukulchai et al. [33] to eliminate shear-locking in the ana-
lysis of beam and plates. Bui et al. [34] adopted the matching fields
approach for the meshfree buckling analysis of Reissner-Mindlin plates.
Recently, Tanaka et al. [35] extended the proposed method to the
analysis of cracked shear-deformable plates. Tiago and Leitão [9,36]
proved that the adaptation of the consistent fields leads to rank defi-
cient system of equations because the constructed approximation
functions are linearly dependent. This means that the consistency ap-
proach can only be employed if appropriate solvers are utilised that can
choose the accurate solution from the set of possible answers.

It is well-known that in the conventional FEM, application of higher-
order elements (also known as p-refinement) is an effective approach to
alleviate the locking effects. This concept has also been explored in the
domain of meshfree methods as an effective remedy against locking.
Choi and Kim [37] utilised higher-order basis functions in EFGM and
studied the optimal order for solutions without shear-locking. Belinha
and Dinis [38] employed the EFGM in analysis of plates and laminates,
and extensively studied the techniques to avoid shear-locking phe-
nomenon. Garcia et al. [39] employed this approach using hp-clouds
method and demonstrated that the issue of shear-locking can be con-
trolled by using sufficiently high polynomial degrees. Although in-
creasing the degree of the basis functions and constructing higher-order
shape functions reduce shear-locking effects, oscillations in the ob-
tained results and locking can occur as the thickness becomes smaller.
Cho and Atluri [1] developed a locking-free formulation by changing
the considered dependent variables and applied it to Timoshenko beam
analysis. In this approach, that is termed as “change of variables”, the
main idea is to use the strains as primary variables instead of rotation.
Tiago and Leitão [9] extended this approach to the analysis of plates
and presented the theoretical background for a meshfree locking-free
formulation of Mindlin plate theory. This unified approach which can
be considered as a modified Mindlin theory has great promise for the
analysis of thin to moderately thick plates. Nevertheless, in this for-
mulation direct enforcement of boundary conditions (BCs) along the
edges is not possible. This difficulty may be a reason why the modified
Mindlin formulation, despite its great potential, has not seen the same
interest as other techniques for the elimination of shear-locking in the
context of meshfree methods.

This study is conducted using the meshfree generalised reproducing
kernel particle method (RKPM) [40–43] which has p-refinement cap-
ability and allows for the inclusion of any desired order of the deriva-
tives of field variables. The latter feature is favourable in the solution of
problems for which a number of BCs involve the derivatives of the field
variables. The generalised RKPM was originally proposed by Behzadan
et al. [43] as a comprehensive form of the gradient RKPM [44–46]. The
generalised RKPM and the RKPM combined with finite strip method
(RKP-FSM) have been utilised for the bending and buckling analyses of
thin plates [24–26] and 3D state-space analysis of thick laminated
composite plates [27,28]. In this study, for the first time to the best of
authors’ knowledge, the modified Mindlin formulation [9] is employed
for the numerical analysis of the full range of thin to thick plates. A

simple and straightforward numerical transformation is presented to
exactly enforce BCs in the modified Mindlin formulation as prescribed
in the conventional Mindlin formulations. Moreover, the effectiveness
of the p-refinement approach in overcoming shear-locking is studied
and comparisons are made with analytical and thin plate solutions. To
this end, higher- and lower-order interpolations are utilised in the
context of the conventional Mindlin theory and the degree of en-
countered locking for various thickness ratios is thoroughly in-
vestigated using a series of benchmark examples. In the presented
analysis using Kirchhoff plate theory, the first derivatives of the field
variable (deflection) are incorporated in the formulation, thus allowing
for the exact and algorithmic enforcement of derivative-type BCs.
Without inclusion of slopes as DOFs, recourse to other techniques such
as the penalty method and Lagrange multipliers is required to enforce
these BCs.

The utilised numerical method is briefly reviewed and the basic
governing equation of principle of virtual work is developed into a
unified formulation for plate theories. Various plate theories including
Kirchhoff, Mindlin, and modified Mindlin theories are presented and
discretised by the generalised RKPM. The required procedure for en-
forcement of BCs in each formulation is presented with required details.
Several numerical examples including thick, thin and perforated plates
are given to study the effectiveness of the modified Mindlin theory and
p-refinement approach to alleviate shear-locking. The paper concludes
with a summary of accomplishments.

2. Numerical method and general formulation

2.1. The reproducing kernel particle method (RKPM)

A given function F(x) can be estimated over domain ω by the fol-
lowing generalised moving least squares (MLS) approximation [40,43]
in terms of the function and its derivatives as
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in which ϕ is the kernel/window function, −C x x ξ( ; )η is the associated
correction function, and D F ξ( )ξ

η is the η-th derivative of F with respect
to ξ. Further, ρ is the dilation parameter, k is the highest order of the
derivatives incorporated in the reproduction formula, and |()| is the
Euclidian norm of ().

The continuous form of the MLS approximation in Eq. (1) must be
discretised using a set of particles to find an approximate solution. Let
x{ }I be a set of particles discretising the domain, the formulation of the
generalised RKPM is obtained by employing the nodal quadrature rule:
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where NP is the number of particles, ΔAI is the nodal area associated
with I-th particle, and subscript d indicates the discretised formulation.
By setting,
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in which =ρ ρ x( )I I , Eq. (2) can be rewritten in the following simplified
form,
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where N x( )I
η is the shape function of the I-th particle associated with

derivative η in the generalised RKPM. By setting k = 0 where required,
the obtained shape functions will be identical to that of the conven-
tional RKPM.
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