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ARTICLE INFO ABSTRACT

This paper presents the fundamentals and illustrates the application and potential of the recent 2.0 release of the
software GeruL — a computer program developed by the authors and made available as freeware on the website of
the Department of Civil Engineering of the University of Lisbon. The program is based on Generalised Beam
Theory (GBT), a bar theory accounting for cross-section in-plane and out-of-plane (warping) deformation, and
performs linear buckling and undamped free vibration analyses of prismatic thin-walled members. Its domain of
application is much wider than that of the previous release (1.0f), making it possible to analyse single or multi-
span members (i) with various support conditions, namely those due to discrete bracing systems, (ii) exhibiting
arbitrary (open, closed or “mixed”) flat-walled cross-sections and (iii) acted by fairly general loadings, including
concentrated and/or distributed transverse forces applied away from the member shear centre axis. After pro-
viding a brief overview on the GBT fundamentals, the program capabilities and innovative aspects are addressed,
and its application is illustrated by means of a few relevant numerical examples. Moreover, the program
Graphical User Interface is described and the procedures and/or options associated with its main commands are
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mentioned.

1. Introduction

It is well-known that, in general, the structural behaviour of thin-
walled members can be highly influenced by complicated non-linear
phenomena involving cross-section in-plane and out-of-plane (warping)
deformation [1]. Therefore, the safe design of such members requires
the use of complex mechanical models, which cannot be derived from
classical beam theories and whose numerical implementations are often
far from straightforward, require time-consuming computations and
lead to results difficult to interpret. Moreover, in the context of thin-
walled structures, the most modern design codes include provisions
concerning ultimate and serviceability limit states that require in-depth
knowledge about the member buckling and vibration behaviour. For
instance, it is worth mentioning the increasingly popular and uni-
versally accepted Direct Strength Method (DSM - e.g., [2]), which ap-
plication is based on (i) the identification of the nature of the relevant
buckling modes (local, distortional or global) and (ii) calculation of the
associated buckling loads and/or moments. In the particular case of
cold-formed steel members, the performance of this task requires using
either (i) Generalised Beam Theory (GBT — e.g., [3-5]), (ii) the Con-
strained Finite Strip Method (cFSM - e.g., [6-8] and see [9] for a
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comparison with GBT) or the Shell Finite Element Method (SFEM - e.g.,
[10]). Although the last method is undoubtedly the most versatile, it is
also very time-consuming and, most importantly, does not allow for a
straightforward identification of the buckling mode nature. In order to
remedy these drawbacks, in the context of buckling analysis, (i) GBT
deformation modes have been employed to constrain the SFEM dis-
placement field, thus leading to results identical to those obtained with
GBT buckling analyses [11], (ii) SFEM solutions have been constrained
according to the cFSM principles [12,13], (iii) SFEM solutions have
been projected into the GBT mode space using the orthogonality
properties of the GBT modal matrices [14] and (iv) the SFEM has been
blended with GBT to improve the accuracy of the latter in geometrically
and/or materially non-linear problems [15]. On the other hand, the
only cFSM-based software currently available (Cursm 4.05, developed at
Johns Hopkins University by Li and Schafer [16]) can handle ex-
clusively members acted by uniform internal force/moment diagrams
and exhibiting fairly standard support conditions — moreover, it does
not perform vibration analyses, essential for serviceability limit state
checks.

Generalised Beam Theory (GBT) is an elegant, insightful and com-
putationally efficient approach to perform structural analyses of thin-
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walled members. Its main distinctive feature is the fact that the dis-
placement field is expressed as a combination of structurally mean-
ingful cross-section deformation modes, whose amplitudes (the problem
unknowns) vary along the member length. This technique, originally
proposed and considerably developed by Schardt [17], has been con-
tinuously updated in the last decade, mostly due to the research efforts
carried out at the University of Lisbon (e.g., [3-5]) - for instance, GBT
formulations have been developed to perform first-order [18,19],
buckling [20-24], vibration [25,26], dynamic [27] and post-buckling
[28-30] analyses involving mostly prismatic members (an application
to tapered members was recently reported [31]), but also frames and
trusses. Quite recently, GBT formulations for physically non-linear
problems were also developed and numerically implemented [32-36].
Moreover, other researchers have also contributed to developments in
this field (e.g., [371).

In the context of the abovementioned research activity, the authors
developed a GBT-based user-friendly computer program named GaruL
(acronym for “GBT at the University of Lisbon” 1y and its first release
(Gerut 1.0B) has been freely available online, since 2008, on the website
of the Civil Engineering Department of the University of Lisbon [38].
However, this first version of GeruL was only applicable to isolated
(single-span) members (i) with open cross-sections (i.e., no closed cells
allowed), (ii) acted by few types of loading (transverse loads could only
be applied at the shear centre axis) and (iii) exhibiting a quite limited
number of support conditions, specified only at the two end cross-sec-
tions.

This paper presents the most recent version of the upgraded 2.0
release of GeruL [39] and illustrates its application and potential to
perform linear buckling and undamped free vibration analyses of thin-
walled members — note that GsruL 2.0 was first released in 2014 and
has been continuously improved since then (the most recent version is
from the beginning of 2016). The program incorporates the latest GBT
developments, which make it possible to overcome several of the
aforementioned limitations of its predecessor. Among the new cap-
abilities, the following ones should be highlighted: (i) systematic and
hierarchic determination of the deformation modes for arbitrary flat-
walled cross-sections (i.e., cross-sections combining arbitrarily closed
cells and open branches), which is done through the implementation of
the most recent cross-section analysis procedure [40,41], (ii) the con-
sideration of general pre-buckling stress distributions, including shear
and transverse normal stresses (which play a key role in capturing the
effects of non-uniform bending and/or the height of transverse loads
[22]), (iii) the presence of arbitrary support conditions, including in-
termediate supports (multi-span beams and bracing systems) and (iv)
the consideration of concentrated or distributed localised masses and/
or elastic supports. Finally, the quality of the Graphical User Interface
(GUI) was considerably improved, leading to a much better input/
output processing and visualisation.

2. Generalised Beam Theory - brief overview

As mentioned above, GBT is a one-dimensional bar theory that ex-
presses/discretises the member deformed configuration as a linear
combination of cross-section deformation modes multiplied by their
amplitude functions. Any GBT-based structural (buckling or vibration)
analysis follows the general procedure depicted in Fig. 1 — the four main
steps are termed (i) Cross-Section Analysis, (ii) Deformation Mode Se-
lection, (iii) Member Analysis and (iv) Solution. A very brief overview
of GBT is presented next — more detailed accounts can be found in the
literature (e.g., [3-5,17,40]).

Consider the prismatic thin-walled member with the arbitrary cross-

1 Previously, this acronym stood for “GBT at the Technical University of Lisbon”. The
change is due to the fact that the former Technical University of Lisbon and the University
of Lisbon have recently merged under the joint name “University of Lisbon”.
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section depicted in Fig. 2(a), in which local coordinate systems
x — s — z are adopted at the walls, as shown in Fig. 2(b). In GBT, the
wall mid-plane axial, transverse and normal displacement components
—u(x, s), v(x, s) and w(x, s) — are given by

w(x, s) = w (g (%),
1)

where (i) uk(s), vk(s) and wi(s) are the mid-line functions defining
cross-section deformation mode k (or “GBT mode k”), (ii) ¢, (x) or
®.x(x) are the amplitude functions describing their variation along the
member length, (iii) the commas indicate differentiation, (iv) 1 < k<N,
where Nj is the total number of deformation modes and (v) the sum-
mation convention applies to subscript k. Therefore, the member de-
formed configuration can be expressed as a sum of contributions from
the N; deformation modes — the contribution of mode k is the product of
its mid-line function by the corresponding amplitude functions. Alter-
natively, Eq. (1) can be written in matrix form as

ux, s) = ug (e, (x)  vx, s) = ve(s)g, (x)

u=ulp, v=1vlp w=wlyp,

(2)

where (i) u, v and w are column vectors containing the u (s), vk (s) and
wg (s) functions, respectively, and (ii) ¢ is a column vector containing
the corresponding amplitude functions ¢, (x).

The member elastic strain energy U, is given by (V is the member
volume)

U= %/‘; gegdv, 3)
where o;; and ¢; are the stress and strain tensors, and the summation
convention applies to all subscripts. Adopting the Kirchhoff-Love hy-
potheses, a plane stress state is assumed in the walls (with non-null
components oy, 0 and 7). Moreover, by using Eq. (2) and assuming
small strains, together with a St. Venant-Kirchhoff material law, Eq. (3)
can be expressed in the form [40]

U= % ‘/L‘ (¢L.Co. +9.Do + ¢"Bp + ¢ Ep + ¢"ETp, )dx, @
where L is the member length and C, B, D and E are N; X N; linear
stiffness matrices, associated with several cross-section mechanical
properties, namely (i) primary/secondary warping, (ii) transverse ex-
tension/flexure, (iii) wall shear distortion/torsion and (iv) membrane/
flexural Poisson effects — the analytical expressions for their compo-
nents are provided in Annex A.

2.1. Cross-section analysis

As shown in Fig. 1, the first step of a GBT structural analysis is the
determination of the cross-section deformation modes (uy (s), v, (s) and
wg (s) functions) and associated mechanical properties (Cy, By, Dy and
E; components), which is done through a systematic procedure termed
Cross-Section Analysis. The program uses a recently developed version of
this procedure, applicable to arbitrary flat-walled members and de-
scribed in detail in [40,41]. It starts with the specification of the cross-
section nodal discretisation. The number, nature and quality of the
deformation modes obtained depend on this nodal discretisation, which
involves (i) natural intermediate nodes, (ii) natural end nodes and (iii)
intermediate (user-defined) nodes (see [40] for more details). The as-
sociated N; deformation modes, which are automatically computed,
may be grouped into 3 main families (superscript (+)¥ denotes mem-
brane strains): (i) Vlasov modes, for which y¥ = ¢} =0, (i) Shear
modes, for which yx”s” #0;eM = 0, and (iii) Transverse Extension modes,
for which )0 — these deformation mode families can still be further
divided into several sub-families, as described in Table 1.

For illustrative purposes, consider the “arbitrary” cross-section de-
picted in Fig. 3(a) and the nodal discretisation shown in Fig. 3(b). Fig. 4
displays the in- and/or out-of-plane (warping) shapes of the N; = 30
deformation modes obtained, which are divided as follows:
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