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A B S T R A C T

Although the numerical manifold method (NMM) has successfully solved many solid and flow problems, it has
scarcely touched upon the analysis of shell problems. A shell is a genuine visible manifold in the real world and
in principle NMM is pretty suitable to solve shell problems. This study aims to fill in the gap by employing the
Naghdi shell model to establish NMM for shell analysis. The mathematical cover is constructed using the lines of
curvature on the shell middle surface so that the best interpolation precision can be ensured. Thereafter, the
standard 4-noded isoparametric shape functions are taken as the weight functions subordinate to the mathe-
matical cover. Taking advantage of the favorable features of NMM, especially the facility to perform the p-
adaptive analysis without compromising the element conformity, a high-order NMM model is employed to
suppress the membrane and shear locking phenomena. Several typical shell benchmarks have been analyzed to
testify the performance of the formulation in the static analysis of thin shell problems, manifesting that the
proposed method can yield desirable results for linear thin shell problems, thus richly deserving the word
“manifold”.

1. Introduction

Shell structures are ubiquitously employed in engineering, attri-
buting to its congenial properties, in a way, especially the efficiency of
load-carrying behaviors, high stiffness and aesthetic value. For the past
decades, the finite element method (FEM) has been extensively applied
in the analysis of shell problems, with mainly three distinct approaches,
namely (i) flat faceted elements, (ii) curved elements and (iii) de-
generated shell elements [1,2]. Impressive as it is, the shell FEM is
believed to have the following disadvantages: 1) the precision of
stresses which are derived from differentiating displacements is ob-
viously lower than that of displacements; 2) a high-quality mesh is
invariably required [3]; 3) the geometry discontinuity caused by the
discretization of the shell surface with flat elements occurs, 4) the se-
vere repercussions of membrane and shear locking, in which the locking
of pure displacement-based shell schemes cannot be wiped out [4–6].
Aiming at coping with those issues of shell FEM formulations, various
techniques have been proposed as follows.

Initially some stress post-processing technologies have been devel-
oped, including the smoothing technology suggested in [7–9], which
improved the stress accuracy. [10–12] have been put forward to

mitigate mesh-dependence and to improve efficiency, accuracy and
stability of shell elements even in case that meshes are coarsely struc-
tured or elements are poorly-shaped.

Additionally, a number of avenues have been paved to attenuate the
locking phenomenon, including the reduced integration or selective re-
duced integration [13–16], the Assumed Natural Strain (ANS) method
[17,18], the Enhanced Assumed Strain (EAS) method [19–21] and the
Discrete Shear Gap (DSG) method [22–24]. Conducive as they are, the
selective or reduced integration schemes may create ill-conditioned system
matrices due to the rank deficiency and spurious zero-energy modes [3].
Regarding the ANS method, Bathe et al. [3,10,25] generalized the ANS
plate elements to degenerated shell elements invariably referred as MITC
(Mixed Interpolation of Tensorial Components) elements, which has ex-
tensively been utilized in commercial FEM analysis software. The EAS
method involves the utilization of the three field variational principle of
Hu-Washizu, and is applied in shell structural analysis in both the linear
and non-linear problems [20,26]. The DSG method shares some common
points with the ANS method, namely, the shear strain is modified within
the element. Yet, DSG does not deploy collocation points or introduction of
extra degrees of freedom and is able to work for arbitrary polynomials and
element shapes [22].
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Meanwhile, various newly created numerical methods have been
exerted to surmount those obstacles in the shell FEM analysis. Meshless
methods were inaugurated by Monaghan et al. [27] and Lucy [28] in
the modeling of astrophysics phenomena, which was then named
Smoothed Particle Hydrodynamics (SPH). And it was further developed
and applied in the shell analysis by many researchers [29–31]. The
partition of unity method (PU) was incipiently proposed by Babuska
[32], which enables the establishment of higher-order global approx-
imations without adding external nodes [33]. A higher accuracy and
convergence rate are thus obtained. Then a series of PU based gen-
erations and extensions to FEM were formulated to overcome those
disadvantages in FEM analysis, which made striking strides in the ap-
plication of shell analysis as well. The common feature of these methods
is that a partition of unity is utilized to establish the global approx-
imation by “pasting together” the local approximation. In particular,
smooth, discontinuous, singular or numerical enrichment functions are
comprised in local approximations in order to accommodate local
characteristics of solution. For instance, the generalized finite element
method (GFEM) [34–36], which eliminates locking phenomena and
yields desirable numerical results. Moreover, The Smoothed Finite
Element Method (SFEM) was ushered in by Liu [37] in 2006. Nguyen-
Van, Wang et al. [38–41] then applied SFEM in the analysis of plates
and shells, which smoothed the strain tensors, avoided the transverse
shear locking and elevated the accuracy of coarse meshed schemes.
Additionally, Bathe illustrated the finite element method enriched by
interpolation covers in the CST2014 conference [42], and then utilized
the interpolation covers for the MITC3, MIT4 shell elements [43,44],
which, on the one hand, enhanced convergence rate solution accuracy
without local mesh refinements; on the other hand, improved mem-
brane and bending behaviors.

Meanwhile, Isogeometric analysis, proposed by Hughes et al.
[45,46], which combines CAD and computer aided engineering by
adopting the same basis function for both geometric description and
unknown field variables, has been widely applied in the modeling of
thin shells. And, the C1-continuity of Kirchhoff-Love shell model can be
satisfied by IGA discretization. For example, Kiendl et al. studied both
Reissner-Mindlin (5-parameter) [47,48] and Kirchhoff-Love (3-para-
meter) [49–52] shell models with isogeometric analysis. The bending
strip method was used in imposing the C1-continuity of Kirchhoff-Love
shell structures with multiple patches in [50]. Duong et al. presented a
general non-linear computational formulation for rotation-free thin
shell models with isogeometric analysis [53]. Sauer et al. studied the
rotation-free three parameters shell model, which proved to be LBB
stable [54]. Nguyen-Thanh et al. [55] brought up the RHT-splines for
multiple-patch coupling for large deformation of thin shells with iso-
geometric analysis.

It was in 1991 that Shi proposed the numerical manifold method
(NMM), aiming at abridging the chasm between the continuum (e.g.
FEM) and dis-continuum methods (e.g. DDA, acronym for
Discontinuous Deformation Analysis) [56]. Two covers, namely the
mathematical cover and the physical cover, are uniquely introduced in
NMM, which enables an agreeable consistency with both FEM and DDA.
Hence, continuous, jointed, blocky materials can be computed in a
consistent manner. Recent years have witnessed a buoyant application
of NMM in multiple fields [57–64].

A major advantage of NMM over FEM is that the p-version adaptive
analysis can be executed without any shackles. The higher degree
polynomials were utilized as the local approximations by Chen et al.
[65] and Jiang et al. [66] to drive the higher-order NMM schemes for
second order problems, which, however, suffered the rank deficiency of
the global stiffness matrix. An et al. [67] proposed an algorithm based
on the inherent topological information of the finite element cover for
predicting the rank deficiency of the stiffness matrix, and extended in
[68]. A variety of strategies targeting on eliminating the rank deficiency
were suggested by [69–71].

The applications of NMM in solid mechanics have been burgeoning.

Its implementation in the plate and shell analysis are primarily con-
cerned here. Zhou et al. [72] applied NMM based on the constrained
variational principle to analyze beams and plates. The introduction of
the penalty function to the generalized variational principle is suited to
impose constraints implicitly in the function or to meet the required
inter-element continuity. Wen and Jian worked on the C1 continuous
cubic B-spline surface interpolation and devised the B-spline based
NMM, which enhanced the solution accuracy and convergence rate
[73]. The polygonal manifold element was also put forward by Wen,
which is favorably adjusted to the intricate computational domain [74].
Zheng et al. [75] formulated the numerical manifold method of Her-
mitian form and applied it in solving the fourth-order problems re-
garding Kirchhoff thin plate bending. Those applications significantly
boost the development of NMM. Remarkable as it is, scarcely has NMM
been implemented in analyzing shell problems. As a shell is a genuine
visible manifold in the real world, only a successful application of NMM
to shell problems NMM is worthy of the word “manifold” in NMM. This
study just aims to fill in the gap.

This paper is organized as follows: in Section 2 we give a brief in-
troduction to the fundamentals of shell formulations, from the Naghdi
shell model, geometry preliminaries to the kinematics, which lays the
foundation for the derivation of shell NMM. Section 3 gives discrete
equations of NMM in analyzing shell problems. The NMM for the shell
configuration, from the establishment of cover systems, the weight
functions, the local approximations to its variational forms, are pre-
sented in this section. Finally, several testing benchmarks are studied in
Section 4, which are compared with the reference solutions. Section 5
emphasizes on the conclusions.

2. Fundamentals concerning shell structures

The mathematical models with different physical assumptions to
describe shell structures can be boiled down into mainly two categories
[1]. The Koiter model is based on the Kirchhoff–Love hypothesis, which
falls into the fourth-order problems. According to the primal variational
formulation, the weight functions in the PU requires to be globally C1

continuous but piecewise C2 continuous, or more accurately, H 2 reg-
ular, which is not convenient numerically. Whereas the Naghdi model
[76] is based on the Reissner-Mindlin assumptions that take into con-
sideration the transverse shear deformation [77], falling into the
second-order problems. The weight functions in the PU, on the other
hand, needs to be merely globally C0 continuous but piecewise C1

continuous, or more accurately, H1 regular. The utilization of the
Naghdi shell model is, therefore, of computationally advantageous.
Therefore, the Naghdi shell model is more extensively adopted in the
literature.

2.1. Geometrical preliminary

The geometry of a Naghdi shell is described by the middle surface,
denoted by S, as is delineated in Fig. 1. The orthogonal curvilinear
coordinate system α β γ( , , ) is established on the middle surface in the
establishment of Naghdi shell model.

Various geometrical parameters, regarding the kinematics in the
subsequent section, are expatiated here:

Principal curvatures of the middle surface S are denoted by k k( , )1 2 .
A, B are defined as the Lamé coefficients, in terms of which, the Lamé
coefficients of any equidistant surfaces from S are expressed as [1],
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, and t= thickness of the shell.
The differential elemental area in the system of curvilinear co-

ordinates of S is given by
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