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A B S T R A C T

In this study, the forced vibration behavior of viscoelastic plates is investigated using the spline finite strip
method (spline FSM). It is assumed that the viscoelastic behavior of materials considered in this research is
linear, which means the material constants are independent of load level and are a function of time only. The
shear modulus is thus represented as a function of the so-called Prony series. Moreover, it is assumed that the
bulk modulus remains constant. For spline FSM, the equilibrium equations are derived using the principle of
virtual work and the classical bending plate theory in matrix form. A numerical solution is developed for forced
vibration analyses using the Newmark's method. The damping effects corresponding to the viscoelastic nature of
materials are incorporated in the analysis by a novel approach that defines a fictitious damping force vector. The
convergence of the spline finite strip method for a viscoelastic plate under different loading conditions is studied.
Additionally, the fast fourier transform (FFT) of forced vibration responses is applied to evaluate the natural
frequencies of plates. The accuracy and efficiency of the proposed spline finite strip model are verified by
comparing the simulation outcomes presented in this work with the results obtained from the finite element
method using ANSYS. Through a comparison of the results, we found the spline finite strip results to be in good
agreement with the finite element results.

1. Introduction

Thin-walled structures are ubiquitous in many branches of modern
engineering, with areas of applications ranging from aircrafts, ships and
space vehicles to bridges, buildings and storage vessels. Thin-walled
structures made of polymers and reinforced polymer composites are
also utilized for constructing large lightweight structures. Indeed, these
polymers are well-known as a viscoelastic material that may give in-
accurate results by linear elastic analysis. Thus, a major challenge in
designing polymer thin-walled structures is their time-dependent be-
havior originating from material viscoelasticity properties.

The finite element method (FEM) is a powerful and versatile tool for
structural analysis and is used to perform precise analysis on structures.
The finite strip method (FSM) is a version of FEM that utilizes a special
element called a “strip”. The distinctive features of finite strip analysis
are computational economy and ease in structural modeling. This
method was classified in two versions, namely semi-analytical FSM and
spline FSM. The differences between the various versions of FSM can be
found in their choice of estimating functions.

Spline FSM was first developed by Cheung in 1982 as an alternative
to semi-analytical FSM [1]. Cheung et al. [2] later extended this method

to include the free vibration and static analysis of arbitrary-shaped
plates. These analyses clearly demonstrated the versatility of the
method. Dawe and Wang [3] presented the vibration of shear-deform-
able beams using the B-spline function that eliminated the effects of
shear-locking, while Sheikh and Mukhopadhyay [4] studied the linear
and nonlinear transient vibrations of plates with arbitrary shapes and
stiffeners, and with arbitrary orientation by the spline FSM. Fazilati and
Ovesy [5] developed a semi-analytical as well as a spline finite strip
method for the analysis of the dynamic instability behavior of flat and
curved thin-walled composite laminated structures under harmonic
axial in-plane loads. In other studies, Ovesy and Fazilati [6] formulated
and applied two different versions of FSM (spline and semi-analytical
FSM) to analyze the problem of parametric instability of laminated
curved panels under non-uniform end loading. Assaee and Hasani [7]
developed a spline finite strip approach for investigating the forced
vibration behavior of thin-walled composite circular cylindrical shells.
Various transient loads as well as different boundary conditions were
analyzed.

The literature on the transient vibration of viscoelastic material is
rather limited. Damping is the most important parameter to consider
when studying forced vibration analysis. Although finite element
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analysis has become a popular tool for modeling structures, the main
challenge in using an FE model is predicting damping in structures,
especially when viscoelastic materials are incorporated into a structure
for additional damping.

Dalenbering [8] investigated the force vibration response of two
different composite double-layer plate structures based on traditional
linear viscoelasticity, using FE models. Hammrannd [9] studied the
dynamic analysis of linear viscoelastic beams, rings, plates and shells
with regards to the time-dependent effects of viscoelastic material using
the FEM. Babouskos and Katsikadelis [10] investigated the nonlinear
dynamic response of thin plates made of linear viscoelastic material of
the fractional derivative type, using the Analog Equation Method
(AEM). Ghayesh [11] analytically investigated the free and forced vi-
brations of a Kelvin-Voigt viscoelastic beam supported by a nonlinear
spring, using the multiple timescales method. Ghayesh [11] also char-
acterized the effect of system parameters on linear and nonlinear nat-
ural frequencies and frequency-responses. Kiasat et al. [12] studied the
free vibration of isotropic viscoelastic beams and plates on a viscoe-
lastic medium, based on Boltzmann's superposition integral model,
using Dynamic Mechanical Analysis (DMA). Zhang et al. [13] developed
a Fourier expansion-based differential quadrature (FDQ) method to
analyze numerically the transverse nonlinear vibrations of an axially
accelerating viscoelastic beam. Amabili [14] studied the nonlinear vi-
bration behavior of Kelvin–Voigt viscoelastic thin rectangular plates
subjected to normal harmonic excitation in the spectral neighborhood
of the lowest resonances. Comparison to viscous damping, effect of
neglecting nonlinear viscoelastic damping terms, change of the fre-
quency–response with the retardation time parameter and the effect of
geometric imperfections were studied.

The forced vibration analysis of viscoelastic materials using Finite
Strip Method has not yet been presented in the literature. This task is
fulfilled in this paper by performing an investigation on the force vi-
bration behavior of thin plates made of viscoelastic material. To check
the validity of the developed methods, the results obtained by finite
element analysis using ANSYS was used for comparison purposes.

In this research, viscoelastic plates are subjected to different loading
and boundary conditions, and the effects of damping on time-history
responses due to viscoelasticity effects are studied. As well, the natural
frequencies of plates made of viscoelastic materials are obtained from
the time-history responses of plates by implementing fast Fourier
transform (FFT).

2. Theoretical developments

2.1. Linear viscoelastic material models

Viscoelastic material behavior has been represented through various
rheological models. One of the models which has received a great deal
of attention by researchers is the Prony series. In this model, the shear
modulus is expressed as a function of time, as follows:
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In the above equation, G t( ) is the time-dependent shear modulus,
∞G is the asymptotic value of shear modulus, Gi coefficients are constant

values, and τi are the relaxation times. All of the constants are derived
from experimental tests for a viscoelastic material. Much of the research
has assumed that the bulk modulus of viscoelastic material remains
constant during a rheological process [15]. Using this assumption and
Eq. (1), the relations for evaluating the time-dependent elastic modulus
and Poisson's ratio for the viscoelastic materials is revealed.

The response of viscoelastic materials is associated with a history of
loading. For a one-dimensional loading case, the constitutive equation
relating the history of stress and strain during loading for a linear vis-
coelastic material is expressed by means of a hereditary integral, as in

the following:
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where tσ( ) and tε( ) are time-dependent stress and strain tensors, re-
spectively, and E t( ) is the time-dependent elastic modulus for a vis-
coelastic material. It should be noted that only linear viscoelastic ma-
terial properties are considered in this paper. This means that the
material constants are independent of load level and are a function of
time only.

2.2. Introduction to spline FSM formulation

The spline function is an estimating continuous-piecewise defined
function. It is represented in the form of B1- B2- B3- B4-spline and B5-
spline. The B3-spline function, which is presented as Eq. (3), is used in
the current study. This function is depicted in Fig. 1a.
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In the above equation, xm is the coordinate of the center of the local
spline function. To interpolate the general function f x( ) in the interval
of < <a x b using the spline function, this interval is divided into equal
pieces, where the distance between any two nodes is = −d a b q( )/ . As a
result, a total of +q 1 nodes will be obtained. Corresponding to each
node, a spline function is assumed and the spline series is finally ob-
tained, as shown in Fig. 1b. In order to apply essential boundary con-
ditions in the B3-spline function, two nodes are added to the beginning
and end of the above-mentioned domain.

Therefore, a representation of an arbitrary function f x( ) using the
spline series may be defined as Eq. (4):

Fig. 1. (a) Local cubic spline function, (b) B3 Spline series.
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