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A B S T R A C T

The problem to identify pre-buckling states for thin-walled shell corresponds to the problem to identify pre-
bifurcation solutions (the inverse bifurcation problem) for von Karman equations that govern the structure.
Typical solution sequences similar to those of post-bifurcation solutions observed along the bifurcation paths of
the nonlinear boundary problem for von Karman equations are extracted to serve as precursors of bifurcation
(tools to solve the problem). The method allows one to divide all operations required to solve the problem under
study into two non-equal parts. The most time-consuming part (to trace bifurcation paths and cluster the re-
spective solution) is performed off-line, while the part of the algorithm that is carried out on-line (the identi-
fication algorithm) requires a relatively small number of arithmetic operations. This allows development of the
efficient system of rapid identification of pre-buckling states.

1. Introduction

The bifurcation theory employed to investigate a thin-shell structure
makes it possible to consider both direct and inverse bifurcation pro-
blems. The direct bifurcation problem, the most conventional one,
implies that one estimates buckling (bifurcation) loads for various ex-
ternal loadings, boundary conditions and so on. As far as dependences
of buckling loads on problem parameters are strongly non-monotonous
it is necessary (in order to solve the problem) to trace all its bifurcation
paths and ascertain its complete bifurcation set (for example, [1]).

The term ‘inverse bifurcation problem’ is conventionally used in two
distinct senses. The first statement suggests that one seeks for such
values of problem parameters that the respective buckling load satisfies
certain demands – by way of illustration we may point to the problems
to find the worst initial imperfection or the infavourable load [2] (that
is the imperfection/load corresponding to the lowest possible buckling
load). Papers [3–5] deal with an approach (to solve this problem) based
upon specific perturbation functions with single or multiple localized
dents (dimple-shape imperfections); to find the worst imperfection,
authors propose to find minimum buckling load among those corre-
sponding the perturbations typical for experimental studies [3,5–7];
another approach employs nonlinear buckling modes as perturbations
[5]; Schenk and Schuëller [8] propose to analyze statistically experi-
mental post-buckling shapes [7].

In our view, this problem can be solved by tracing all its post-
buckling (bifurcation) paths, since nonlinear buckling modes associated
with the lowest buckling loads correspond to (secondary and tertiary)

bifurcation paths with relatively small low boundaries of existence
domains [1]. The deformed shapes corresponding to these paths,
usually, a single dent, a group of dents, or a ‘belt’ of dents [1], are
similar to those employed in single or multiple perturbation load ap-
proach [3,5,6].

The second statement of the inverse bifurcation problem implies
that one attempts to predict buckling (or to put it differently, to identify
pre-buckling state) provided a sequence of deformed shapes is ob-
served. This statement is a subject of much current interest as far as it
manifests itself in actual practice as the problem of rapid sustainability
assessment of a damaged thin-walled structure. On the other hand,
robust design [9], which is growing more popular in engineering, im-
plies that one is able rapidly identify every possible buckling state.

The present paper concerns with a novel approach to predict thin-
walled shell buckling that it is the second statement of the inverse bi-
furcation problem for thin-shell structures. The approach utilizes
knowledge about post-buckling (bifurcation) paths traced for the re-
spective static nonlinear elastic problems – namely, typical sequences of
solutions (deformed shapes) associated with post-buckling bifurcation
paths serve as bifurcation precursors; the observed sequences of de-
formed shapes may correspond to processes unfolding in time. It is
worth stressing that in the frameworks of dynamical analysis for this
type of partial differential equations (PDEs) it is possible to solve the
inverse bifurcation problem for a particular right-hand member (load
function) only; while the proposed approach can be employed to
identify pre-buckling state for any right-hand member.

Rapid assessment is associated with the concept of progressive
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disproportionate collapse of a structure. For example, the paper [10]
discusses progressive collapse for a structure made of box-like beams
and possible mechanism of its occurrence. The paper [11] reviews
various approaches to rapid assessment and describes the respective
problems that have not yet been adequately explored. By and large all
available approaches can be broadly classified into two groups. For the
method of the first group, one identifies values of parameters of the
observed system (those of initial imperfection, the external load, flaws
or irregularities of shell material) and then performs non-linear buck-
ling analysis for the system with the identified parameters to estimate
buckling load (see [12] and references therein). The second group
suggests that one utilizes a salient pre-bifurcation feature to predict
buckling; such features are collectively called ‘flags’, ‘fingerprints’, or
‘precursors’ of bifurcation; recently, terms ‘early-warning signs’ and
‘tipping points’ are growing more popular [13–15]. Sometimes methods
that belong to these groups are named model and modelless, respec-
tively [16].

The method proposed by Stull et al. [17] exemplifies the first ap-
proach as applied to theory of thin-walled structures; it implies that the
stochastic inverse problem is solved (in the framework of Bayesian
statistics) to identify initial imperfections and thereby to estimate the
buckling load. Vibration Correlation Technique, experimental method
proposed by Abramovich et al., exemplifies the second approach [18];
the authors propose to use characteristic oscillations preceding to
buckling as precursors of bifurcation and formulate operational
guidelines to prevent buckling.

It is worth emphasizing that precursors of bifurcation for PDEs and
particularly for equations of thin-walled shells theory fall far short of
being perfect, “Despite these exploratory works, it is quite clear at this
point that the full mathematical analysis of early-warning signs for
spatio-temporal systems is largely uncharted territory.”[13] A plenty of
precursors designed for single-dimension time series can be extended to
multi-dimension ones in a straightforward fashion and therefore used as
those for PDE: it is possible to use precursors based on rate of change of
covariance matrix, skewness, and so on [19]. Another approach leads to
averaging with respect to spatial coordinates that makes it possible to
employ the bifurcation precursors designed for single-dimension time
series as such [20].

For the overwhelming majority of methods used to identify a pre-
buckling state, it is necessary to perform a very large number of ar-
ithmetic operations. Since speed of buckling processes associated with
thin-walled shells is very high and the buckling can be due to off-design
contingencies, the use of such methods for rapid sustainability assess-
ment of thin-walled shells is computationally prohibitive.

The present paper deals with the method able to divide all opera-
tions required to solve the problem under study into two non-equal
parts. The substantially greater part can be performed off-line; the
significantly lesser – directly used to identify pre-buckling states – is to
be carried out on-line. The necessary precondition to apply the method
is to trace all bifurcation path of the respective non-linear boundary
problem.

The seminal papers concerned with bifurcation paths of von Karman
equations (for example, [21]) deal mainly with the primary bifurcation
paths. However, the non-linear boundary problem features the spec-
trum crowding and the secondary and tertiary bifurcation paths that
makes it necessary to use a radically new method. To the best of au-
thors’ knowledge, the paper [22] presented the secondary bifurcation
paths associated with a cylindrical shell subjected to uniform external
pressure; the solutions of the secondary paths correspond to localized
buckling shapes, frequently encountered in actual practice (see also
[1,23]). The paper [24] considers the nonlinear boundary problem
under investigation for cylindrical panel subjected to the lumped force;
the authors employ the finite element method combined with arc-
length technique to trace primary bifurcation paths.

The papers [25,26] are concerned with ‘jump’ technique to switch
to bifurcation paths. The authors succeeded in tracing some secondary

bifurcation paths for an axially-compressed cylindrical shell (the com-
pression is uniform). Hu and Burgueño [27] explore, both numerically
and experimentally, bifurcation solutions corresponding to non-uni-
form compression; the compression function is a linear combination of
linear buckling modes. Zhao et al. [28] combine linear and nonlinear
techniques to prevent localized buckling (associated with tertiary bi-
furcation paths [23]) by means of optimally placed grids-stiffeners. The
monograph [23] presents the bifurcation structure including various
primary (for cylindrical panel [see also [29]]); primary and secondary
(for cylindrical shell subjected to a uniform pressure); primary, sec-
ondary, and tertiary (for cylindrical shell subjected to a uniform axial
compression) bifurcation paths; papers [30,31] provides results for
spherical shell.

One should emphasize that usual nonlinear computation can be
carried out using any conventional finite elements package, while the
problem to construct bifurcation structure makes it necessary to de-
velop and implement specific methods. These methods may lean upon
the finite element method [2,24] or may require development new
methods to solve nonlinear boundary problems for PDEs [1,32] – we
favour the second alternative as it avoids lots of computational diffi-
culties of the bifurcation theory.

To summarize, the present paper proposes a novel approach to
predict buckling for thin-shell structure (to identify pre-buckling states)
– mathematically, it is the approach to solve the inverse bifurcation
problem for von Karman equations. The remainder of the paper is or-
ganized as follows. The next section presents the von Karman equations
and discusses briefly their post-bifurcation solutions. The third and
fourth sections formally state the problem to identify pre-buckling state
and outline the method used to solve it, respectively. The fifth one
provides the identification results. Finally, the last section presents
conclusions.

2. Nonlinear boundary problem of thin-walled structures theory

In the framework of shallow shells theory, a cylindrical shell sub-
jected to a uniform external pressure is governed by von Karman
equations for both pre- and post-buckling states [33]:

∇ + − ∇ =

∇ − − ∇ =

a w T w q

a T w w w

( , Φ) Φ ,

Φ 1
2

( , ) 0,

k

k

1
4 2

2
4 2

(1)

where
∇ = +∂

∂
∂
∂

α k kk
α

x
α

x
2

1 2
2

1
2

2

2
2 ;

≡ − +∂
∂

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂

∂
∂

T (α, β) 2α
x

β
x

α
x x

β
x x

α
x

β
x

2

1
2

2

2
2

2

1 2

2

1 2

2

2
2

2

1
2 ;

=w w x x( , )1 2 , = x xΦ Φ( , )1 2 are the normal displacements (of the
shell middle surface) and the force function, respectively; =q q x x( , )1 2
is a function of an external pressure. The problem is defined on a cy-
lindrical domain = ≤ ≤ ≤ ≤x π x L RΩ {0 2 ; 0 / }2 1 ; ≡ ∂Γ Ω stands for its
boundary. L, R, and h are the length, radius and thickness of the shell. E
and μ denote the Young's modulus and Poisson's ratio of shell material,
respectively.

The shell ends are simply supported: Eq. (1) is completed by the
boundary conditions
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One should emphasize that the method discussed below is valid for
various boundary conditions and thin-walled structures.

The figures presented in the paper are plotted for values
= ≤ ≤ ≤ ≤x x πΩ {0 4; 0 2 }1 2 , = = − = =a a k0.1; 1; 0; μ 0.31 2 2 ; these

values correspond to the ratio of shell length to its radius equal to
=L R/ 4.0. The ratio of the radius to shell thickness =k R h/1 (with the

respective wavenumber (in the circumferential direction) of the linear
buckling mode corresponding to the minimal buckling pressure, the
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