
Contents lists available at ScienceDirect

Thin-Walled Structures

journal homepage: www.elsevier.com/locate/tws

Full length article

On the shape of bistable creased strips

Martin G. Walker⁎, Keith A. Seffen
Cambridge University Engineering Department, Trumpington St, Cambridge CB2 1PZ, United Kingdom

A R T I C L E I N F O

Keywords:
Creasing
Folding
Snap-through
Bistable
Localisation
Origami

A B S T R A C T

We investigate the bistable behaviour of folded thin strips bent along their central crease. Making use of a simple
Gauss mapping, we describe the kinematics of a hinge and facet model, which forms a discrete version of the
bistable creased strip. The Gauss mapping technique is then generalised for an arbitrary number of hinge lines,
which become the generators of a developable surface as the number becomes large. Predictions made for both
the discrete model and the creased strip match experimental results well. This study will contribute to the
understanding of shell damage mechanisms; bistable creased strips may also be used in novel multistable sys-
tems.

1. Introduction

Studies on the deformation of strips with a curved [1] or folded [2]
cross-section have only captured smooth deformation of the strip axis.
When the cross-section of the strip consists of a sharp crease or fold,
new singular bistable behaviour occurs, which is not revealed by pre-
vious models. We address this need here.

In their study of bistable creased disks, Lechenault and Adda-Bedia
[3] fold a thin disk about equi-spaced radii, in order to create rota-
tionally symmetrical creases. For two or more creases, a central vertex
is formed initially, which can be inverted by turning the disk inside out.
This configuration is usually bistable, with gently curved material in
between creases that have not opened or closed any further. Assuming
inextensible i.e. developable deformation, and rigidly-fixed crease an-
gles, they calculate the shapes of the initial and inverted states. Their
simplest case is a singly creased disk or strip, which can be readily made
using, say, paper card of reasonable stiffness, such as a beer mat: after
flexing a few times to establish a crease, it can be “pushed through” to
form a vertex, where it maintains inversion. We can do the same in
Fig. 1 using a plastically folded metal strip. The observed deformation
always has two planes of symmetry centred around the central vertex. It
is clear the deformed shape shares features with familiar, if unwelcome,
indentations straddling fold lines in car body panels, see Fig. 2. This
study therefore applies more broadly to folded or pressed thin-walled
structures, typically made of metal and used as skins in vehicles,
building cladding, etc.

Because of the developable assumption, infinite material strains
and, hence, stresses and strain energy density occur at the vertex in
theory. In practice, these are limited by localised yielding and

stretching close to the vertex but not extensively if the disk is relatively
thin. This begs an obvious question about how bistability is predicated
upon formation of the vertex. As a simple counterexample, consider
when a small perforation or hole is made where the vertex would ap-
pear, see Fig. 1. The effort needed to push through and invert the strip is
now less compared to one of similar size without a hole, and bistability
remains, as later experiments attest. There are also no discernible dif-
ferences in shape, which could be scrutinised, for example, by mod-
ifying the analysis in [3] to include a central hole.

We choose instead a discrete kinematical formulation in which the
deformed shape is approximated by rigid facets folding about hinge
lines in the original strip; the central crease is also a hinge line but of
fixed rotation. In the limit of a large number of hinges we approach the
continuum framework, but this is not essential nor analytically effi-
cient. As shown originally in [4] for the familiar “d-Cone” and then in
[5] for general conical defects, the set of compatible rotations for the
least number of viable hinges have a unique geometrical solution when
the vertex is assumed to be developable; the resulting folded shape has
remarkably similar overall properties compared to the continuous ex-
ample it represents. When the apex of the vertex is removed by making
a hole, the formulation also applies if we assume that hinge lines in-
tersect at a “virtual” vertex at its centre.

The system is kinematically indeterminate for more hinge lines. If
we assume that some form of elastic bending is represented by folding,
we may extract, hopefully, a single set of unique rotations that also
satisfy equilibrium. We therefore construct the “equivalent” strain en-
ergy of bending stored by discrete hinge lines before minimising under
the developable vertex constraint. When the vertex hole is reduced in
size to zero, the level of strain energy approaches infinity, as noted, just
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as infinite vertex stresses emerge from the continuum analysis in [3],
which seem unsatisfactory. However our equilibrium analysis leads to
coupled differential equations in the rotations that behave in a bounded
manner irrespective of the size of the hole, even if the hole is reduced to
zero. In other words, infinite strain energy (and stresses) are largely
irrelevant and geometry dominates the nature of solution. This emer-
gent property of the formulation with a hole, we believe, makes an
alternative contribution to how such problems are tackled.

The layout is as follows. We first describe the simplest rigid-facet
model of a singly-creased strip, where we introduce the Gauss mapping
technique for a developable vertex behaviour. We then extend our
approach to an arbitrary number of hinge lines, and furnish a worked
example to demonstrate a vanishing hole size. Three sets of experi-
mental data are presented and compared to theoretical predictions of
the overall shape. When a vertex hole is present, a twofold paradox
emerges: the shape of the strip is largely unaffected by the size of the
hole even though theory would suggest some differences, and that all
specimens appear to conform to the prediction for no hole. We offer a
possible explanation but we not do not formally resolve matters before
concluding our study. Note that by the nature of our analysis we cannot
predict whether or not the inverted configurations are robustly stable
but we do give general limits informed by experiments.

2. Kinematic analysis

2.1. Gauss mapping

We construct two phenomenological models of rigid facets con-
nected by straight hinge lines. The deformation is assumed to be doubly
symmetric with respect to the crease axis and the transverse centre line
of the strip. Non-symmetric deformations may be possible depending on
the hinge line geometry, but the bistable behaviour we see always forms
a doubly symmetric shape. Consider first a creased strip with a pair of
orthogonal hinge lines as shown in Fig. 3a.

When the strip is bent along the crease axis, the crease must flatten

completely before rotations about the hinge lines can occur. The second
model shown in Fig. 3b has four hinge lines and six facets. It has a
second compatible state which is clearly a simplified version of the
inverted shape shown in Fig. 1: there is well defined central vertex
under a fixed crease angle.

All possible shapes must satisfy rigid folding compatibility of the
hinge lines, which can be enforced through a simple Gauss mapping
technique [6]. We map the unit normal vector of each facet to the
centre of a unit sphere. As the facets rotate, their normal vectors trace
out arcs of great circles on the surface of the sphere, with lengths equal
to the relative rotation angles between the facets across hinge lines [7].
The signed area enclosed by these arcs is equal to the angular defect at
the vertex, which measures the solid angle and, hence, the Gaussian
curvature of the vertex [8]. For rigid facets that fold without tearing or
crumpling, there can be no defect and thus, the enclosed area must
equal zero.

To illustrate how this method works consider the simple two-hinged
model shown in Fig. 3a. The facet labelling is shown in Fig. 4a. The
rigid facets (A,B,C,D) are labelled according to Bow's notation [9],
while the hinge rotation directions satisfy the right-hand rule. The
general Gauss mapping is shown in Fig. 4b, which does not correspond
to any developable state shown in Fig. 3a. To satisfy the requirement for
zero enclosed area, there are two possible cases: = =ab dc 0, which is
the initial state, or =β 0, a flattened crease. Since the possible shapes
for this configuration of hinges do not correspond to the observed
bistable behaviour, more hinges are needed to capture the observed
behaviour.

The hinge line layout of Fig. 3b is formalised in Fig. 5. Each of the
four hinge lines are symmetrically separated from the crease line by the
same angle α, which affords equal rotations, θ, in the deformed case.
The six facets (A,B,C,D,E,F) yield a mapping with two crossover points
and three enclosed areas, S1, S2, S3, which sum to zero for a developable
folded shape. For each area, a right-handed orientation in the sense of
following the vectors is declared positive, and vice versa. Obviously

= = = =ab bc de ef 0 gives zero area for = =af cd β, which is simply
the initial strip layout. The second and only non-trivial solution has

= = = =ab bc de ef θ and obviates the following exact relationship
between θ, α and β, which is found by calculating the areas using
spherical geometry (Appendix A):
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We are interested, in particular, in the strip end rotation, which is de-
fined as Ψ in Fig. 6 and provides a means of comparison to [3] and
experiments. The distance between lines af and cd in the Gauss map-
ping, which correspond to the crease line segments between facets AF
and CD, respectively, is the relative rotation of the crease line segments,
or Ψ2 . Therefore, Ψ depends on the facet rotation, θ, but we can
eliminate this using Eqn (1) (see Appendix A) in order to return an
expression written purely in terms of the fixed parameters, β and α:
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There are no other developable states since other rotations yield a
Gauss mapping with net area, which implies stretching of the facets at
the vertex as the strip is deformed beyond its initial configuration. As
the strip approaches its final developable state and the vertex forms,
stretching cannot accumulate and must be relieved. Whilst this leads to
possible damage in practice if peak in-plane stresses are high enough,
their mitigation by non-linear changes in geometry is a familiar pre-
requisite for bistable behaviour e.g. the snap-through of shallow arch
beams [9]. We cannot however prove as such since our model does not
capture the intervening deformation; we can only assess the accuracy of
Eqn (2) by comparing it to inverted shapes in practice, which we do in
Section 3.

Fig. 1. Creased strips with and without a hole in their initial and inverted states. They are
made from copper beryllium of thickness 0.1 mm, are 50 mm wide and 200 mm long.

Fig. 2. An inverted strip compared to a “dent” in a vehicle body. Note the similarity of
vertex shapes lying on the original crease lines.
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