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A B S T R A C T

This expository brief note elaborates on the solution to the buckling problem of a uniformly compressed rec-
tangular plate for which the two opposite loaded edges and the unloaded edges are considered simply supported
and free, respectively. While Reissner originally discussed briefly this problem in 1909, it was not until 1954
when Ishlinskii presented its rigorous mathematical solution in the form of a transcendental equation, the so-
lution of which requires the use of an iterative numerical technique. Despite remaining almost unreferenced and
unnoticed in the literature, the works of Reissner and Ishlinskii in connection with this specific stability problem
are educationally instructive and practically relevant. Ishlinskii's solution forms the basis upon which a simple
approximate closed-form solution, presented in this note, yields results that do not differ significantly from those
computed iteratively using the transcendental equation. Results presented in this brief note can be used as
benchmark solutions for validating structural engineering software packages.

1. Introduction

For over a century, solutions of problems related to axially com-
pressed rectangular plates have attracted repeated attention from the
structural engineering and mechanics community. This is due to their
fundamental roles related to the analysis and design of plated structural
components encountered in a wide range of engineering applications.
Also, solutions of plate stability problems under various loading and
boundary conditions form the fundamental basis upon which local
buckling slenderness limits and cross-section classification of metallic
structural components are based (e.g. AASHTO [1], ANSI/AISC 360-16
[2], Aluminum Design Manual [3], and Eurocode [4]). The earliest
analytical study on the subject can be traced back to the 1890 article by
Bryan [5] who presented a solution of the stability problem of an iso-
tropic rectangular plate simply supported on all four edges while sub-
jected to uniform compression on two opposite edges. Since then, a
large number of solutions concerning the stability of rectangular plates
subjected to various support and loading conditions have been pub-
lished in classical monographs and archival journals (see e.g. Ti-
moshenko [6], Bleich [7], Timoshenko and Gere [8], Bulson [9], Szilard
[10], Chia [11], Bloom and Coffin [12], as well as publications cited in
these references). Solutions to the buckling problem of an isotropic
rectangular plate compressed on two opposite edges with boundary
conditions such that the two loaded edges are simply supported, one
unloaded edge is free of any constraints, and one unloaded edge is 1)
simply supported, 2) built-in, or 3) rotationally restrained against

rotation are well-documented in the literature (Trayer and March [13],
Lundquist and Stowell [14], Bleich [7], Bulson [9], Timoshenko and
Gere [8]). Surprisingly, the solution to the same problem when both
unloaded edges are free has rarely been referenced or brought to the
attention of the structural engineering and mechanics community. In
1909 Reissner [15] was the first to discuss this problem and to note, in
an elegant mathematical fashion, that the critical force for the problem
at hand is attained when the plate buckles into a half- sinusoidal wave
in the direction of compression between the loaded edges. Forty-five
years following the publication of Reissner's brief note, Ishlinskii [16],
in 1954, addressed the same problem and presented a rigorous math-
ematical solution in the form of a transcendental equation governing
the buckling force, the minimum positive real root of which can be used
to calculate the critical force. Ishlinskii [16] showed results only for the
two limiting cases: a narrow long strip and an infinitely wide plate. He
also alerted the reader to the inapplicability of Saint-Venant's principle
[17] within the realm of two dimensional plate theory. Enlightening
discussions concerning the applicability and limitations of Saint-Ve-
nant's Principle to various problems of mechanics and structures can be
found in Hoff [18], Mises [19], Sternberg [20], Naghdi [21], Toupin
[22], and Gregory and Wan [23].

At a much later date, Banichuk and Ishlinskii [24] discussed again
this specific plate problem from both stability and vibration points of
view and pointed out that an asymmetric buckling of the plate with
respect to a direction perpendicular to that of the applied forces does not
occur prior to that of a symmetrical configuration. The objective of this
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technical note is to present a closed-form practical expression for
computing the buckling force for an isotropic rectangular plate com-
pressed on two simply supported edges and free of restraints at the
unloaded edges. Practicing engineers and engineering students may
find the present note not only of instructional value but also of re-
levance to structural engineering design practice. This note will also
serve to provide an attentive response to a question raised via the Steel
Interchange of Modern Steel Construction [25] regarding the limiting
width-to-thickness ratio one should use for a compressed rectangular
steel bar in order to avoid local buckling.

2. Analysis

Consider a homogenous and isotropic rectangular plate, assumed to
be perfectly-flat, having width, length, and thickness dimensions of
b,l,and t, respectively. Let the plate be subjected to compressive forces
N0, uniformly distributed on two simply supported edges, while keeping
the remaining two unloaded edges free of restraints. Hereafter, the
plate is assumed to occupy a region of three-dimensional Euclidean
space referred to a fixed Cartesian coordinate system x y z( , , ) in which
the plate middle plane coincides with the x y( , ) plane. For convenience,
the x-axis is chosen to be the axis of symmetry that is parallel to un-
loaded edges as shown in Fig. 1.

In this case, the differential equation for the elastic displacement of
the plate shown in Fig. 1 can be expressed in the form (see e.g. Ti-
moshenko and Gere [8])
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where = −D Et ν/12(1 )3 2 in which E and ν are the material's modulus
of elasticity and Poisson's ratio, respectively. By adopting a solution
(Lévy [26]) of the form =w f y sin mπx l( ) ( / ) satisfying the boundary
conditions at =x 0 and =x l, namely = =w y w l y(0, ) ( , ) 0 and
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Following Ishlinskii [16] and letting =η πy
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for which the general solution is

= + + +f η C rη C sη C rη C sη( ) cosh( ) cosh( ) sinh( ) sinh( )1 2 3 4 (4)

where = +r m m φ2 and = −s m m φ2 ; and C1, C2, C3, and C4
are constants that need be determined from the boundary conditions at
the free edges at = ±y b/2 (i.e. both the moment and the shear forces
vanish). The moment and shear force equations at the free-edge can be
expressed via the following boundary conditions:
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By defining, =β πb l( /2 ) Eqs. (5) and (6) can be shown to yield:
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For the case of a symmetrical buckled deflected shape about the x-
axis, e.g. = − ≡ = −f y f y f η f η( ) ( ) ( ) ( ), the constants C3 and C4 in Eq.
(4) must vanish. Thus, f η( ) becomes

= +f η C rη C sη( ) cosh( ) cosh( )1 2 (9)

Application of the boundary conditions given in Eqs. (7) and (8)
yield the following two simultaneous equations:
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for which a nontrivial solution exists only if the determinant of the
coefficient matrix is equal zero. By doing so and after some algebraic
manipulation, the following transcendental equation governing the
force parameter φ is obtained:
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Eq. (11) is exactly the same as that presented by Ishlinskii [16]. This
equation must be solved numerically in order to find the minimum
positive real root, φmin, thus determining the smallest value of N0,
termed the critical force Ncr :
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Substituting the plate flexural rigidity term = −D Et ν/12(1 )3 2 into
Eq. (12), the critical buckling force can be computed as
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where =I bt /123 is the plate moment of inertia about the axis of
buckling. Alternatively, the average buckling stress, Fcr, can be com-
puted as follows:
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where =A btg and =r t/ 12 are the plate's gross cross-sectional area
and radius of gyration about a centroidal axis parallel to the plate
loaded edges, respectively. It is to be noted that Eqs. (12) and (14) differ
only slightly (i.e. having the additional term −φ ν/(1 ))min

2 from the
classical Euler buckling force and stress formulae for a concentrically
compressed elastic member with pin-ended boundary conditions and a
length of l.

3. Limiting cases

For the two problems representing the buckling of a narrow plate in
one case and the buckling of a very wide plate in another case, closed-
form expressions for φmin can be established as follows:

Fig. 1. Coordinate system, rectangular Plate dimensions, loading, and boundary condi-
tions. SS and SFr denote simply supported and free edges, respectively.
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