ELSEVIER

Contents lists available at ScienceDirect

# Thin-Walled Structures



journal homepage: www.elsevier.com/locate/tws

Full length article

# Circular concrete filled steel tubular (CFST) columns under cyclic load and acid rain attack: Test simulation



## Fang Yuan, Mengcheng Chen\*, Hong Huang, Li Xie, Chao Wang

Dept. of Civil Engineering and Architecture, East China Jiaotong Univ., Nanchang 330013, China

### ARTICLE INFO

# ABSTRACT

Keywords: Concrete filled steel tubular (CFST) columns Cyclic load Acid rain attack Seismic performance Test simulation Concrete filled steel tubular (CFST) structure attracts increasing engineering applications in earthquake prone regions due to its high section modulus, high strength, and good seismic performance. However, the seismic resistance of CFST columns may be affected by the environmental corrosions, such as acid rain attack. This paper makes an attempt to investigate the performance of CSFT columns with circular sections under both a cyclic load and an acid rain attack. First, the tensile mechanical properties of steel plates with various corrosion rates were tested. Second, a total of 12 columns with different corrosion rates were tested subjected to a reversed cyclic load. It was found that the corrosion leads to not only a loss in wall thickness but also an evident decrease in yield strength, elastic modulus, and tensile strain capacity of the steel coupons, and also to a significant deterioration in the load carrying capacity, ductility, and energy dissipation of the CFST columns. The larger the axial force ratio, the severer deterioration of deformation capacity of the columns.

#### 1. Introduction

Concrete filled steel tube (CFST) has an increasing utilization in the earthquake prone regions in China due to its high strength, good ductility, and excellent energy dissipation capacity [1]. The outer steel tube of CFST member is exposed to external environment and is prone to suffer environmental corrosions during the service life span, such as acid rain attack. Worldwide acid rain problems have been worsened by industrial and urban developments and acid rainfall has been reported to cover at least one third of Chinese territory [2–5]. Thus, it is essential to evaluate the seismic behaviors of CFST members that have suffered acid rain corrosion.

In the past few decades, a great number of studies have been carried out on the seismic behaviors of CFST members [6–13]. Some literature reviews had been conducted by Nakanishi et al. [12] and Elremaily and Azizinamini [13]. It made a consensus that the CFST members exhibit much higher ductility compared with the hollow steel tubes owing to the composite effect between the core concrete and outer steel tube. Han et al. [14] also tested the cyclic behaviors of concrete filled double skin steel tubular (CFDST) members under combined axial and flexural load. It was reported that the CFDST members show good ductility and excellent energy dissipation capacity even under high levels of axial force ratio above 0.6.

Experimental studies on steel structures and CFST members under corrosive environment have also been conducted in recent years. For example, Almusallam [15] studied the effect of sodium chloride corrosion on the properties of reinforcing steel bars and found that reinforcing steel bars with more than 12% corrosion indicates a brittle failure. Qin and Cui [16] studied the effect of corrosion models on the time-dependent reliability of steel plate elements and the advantages and the flexibility of the proposed corrosion model were demonstrated. Melchers [17] studied the influential factors on the corrosion rate of steel in seawater environments. Saad-Eldeen et al. [18] tested the load carrying capacity of a corroded steel box girder. Sultana et al. [19] studied the compressive strength of stiffened panels under pitted corrosion. Karagah et al. [20] tested the steel columns under corrosion and axial compression. Han et al. [21,22] and Hou et al. [23] carried out the experimental studies on 22 beams and 34 stub columns under sustained load and chloride corrosion. The test results showed that the chloride corrosion has great effects on the load carrying capacity of construction steel and CFST members. Simplified calculation methods for the load carrying capacity of CFST beams and stub columns were also proposed based on parametric studies [24].

Previous studies have focused on the static behaviors of corroded CFST members. Few experimental works have been studied the seismic behaviors of corroded CFST members, especially under acid rain attack. This gives rise to the need for more studies of the problem.

This paper aims to investigate the seismic behaviors of circular CFST members subjected to acid rain corrosion. The effect of corrosion on the mechanical behaviors of steel tubes is firstly tested and discussed. After

http://dx.doi.org/10.1016/j.tws.2017.10.005

<sup>\*</sup> Corresponding author. E-mail address: mcchen@ecjtu.edu.cn (M. Chen).

Received 3 May 2017; Received in revised form 2 September 2017; Accepted 2 October 2017 Available online 13 November 2017 0263-8231/ © 2017 Elsevier Ltd. All rights reserved.

| Thin-W  | alled St | ructures   | 122 | (2018) | 90- | 101 |
|---------|----------|------------|-----|--------|-----|-----|
| 1101-11 | uncu or  | i uctui co | 122 | (2010) | 20- | 101 |

| Nome     | enclature                                          | No                 | axial force applied on the columns           |
|----------|----------------------------------------------------|--------------------|----------------------------------------------|
|          |                                                    | $N_u$              | axial compressive capacity of the columns    |
| The fo   | llowing symbols are used in this paper             | Р                  | lateral load of column                       |
|          |                                                    | $P_m$              | peak load of column                          |
| $A_c$    | cross-sectional area of core concrete              | $P_u$              | ultimate load of column                      |
| $A_s$    | cross-sectional area of steel tube after corrosion | $P_{\gamma}$       | yield load of column                         |
| D        | column diameter                                    | ts                 | wall thickness of steel tube after corrosion |
| $E_s$    | elastic modulus of corroded steel                  | $t_{s0}$           | initial wall thickness of steel tube         |
| $E_{s0}$ | elastic modulus of uncorroded steel                | η                  | corrosion rate                               |
| $f_{ck}$ | characteristic compressive strength of concrete    | ξ                  | confinement factor                           |
| $f_{cu}$ | compressive strength of cube concrete              | μ                  | ductility coefficient                        |
| $f_{y}$  | yield strength of corroded steel                   | $\varepsilon_{u0}$ | ultimate elongation of corroded steel        |
| $f_{y0}$ | yield strength of uncorroded steel                 | $\varepsilon_u$    | ultimate elongation of corroded steel        |
| $f_u$    | ultimate strength of corroded steel                | $\Delta$           | lateral displacement of column               |
| $f_{u0}$ | ultimate strength of uncorroded steel              | $\Delta_y$         | yield displacement of column                 |
| n        | axial force ratio                                  | $\Delta_m$         | displacement of column at peak load          |
| L        | column length                                      | $\Delta_u$         | ultimate displacement of column              |
|          |                                                    |                    |                                              |

that, the effects of the corrosion rate and axial force ratio on the seismic behaviors of CFST columns, such as ultimate strength, ductility, energy dissipation ability, et al., are experimentally studied and systematically evaluated.

#### 2. Experimental program

#### 2.1. Preparation of specimens

In total, 12 circular column specimens were tested in the present work. All tested specimens have a sectional size of  $D \times t_s = 1500 \times t_s$  $114 \times 4$  mm and a length (L) of 1500 mm, where D is the diameter of outer steel tube sand  $t_s$  is the wall thickness of steel tube. The CFST specimens were fabricated through the following steps. The steel tubes were segmented from an industrial steel tube. A steel plate was welded into one end of the steel tube. Then, the steel tubes were placed upright for casting. The concrete was cast into the steel tube and vibrated by a poker at the same time. After curing, a small gap between concrete surface and top steel tube was observed due to concrete shrinkage. The longitudinal gap was filled with a high strength epoxy in order to make the concrete surface flush with the top steel tube. Another steel plate was welded onto the top end of the steel tube before testing. The main design parameters were an axial force ratio (n) from 0 to 0.5 and a corrosion rate ( $\eta$ ) from 0% to 30%. The axial force ratio herein is defined as:

$$n = \frac{N_0}{N_u}$$

| Table 1     |    |        |            |
|-------------|----|--------|------------|
| Information | of | column | specimens. |

| Г                     |                                              |
|-----------------------|----------------------------------------------|
| $P_m$                 | peak load of column                          |
| $P_u$                 | ultimate load of column                      |
| $P_{y}$               | yield load of column                         |
| ts                    | wall thickness of steel tube after corrosion |
| $t_{s0}$              | initial wall thickness of steel tube         |
| η                     | corrosion rate                               |
| ξ                     | confinement factor                           |
| μ                     | ductility coefficient                        |
| $\varepsilon_{u0}$    | ultimate elongation of corroded steel        |
| $\varepsilon_u$       | ultimate elongation of corroded steel        |
| Δ                     | lateral displacement of column               |
| $\Delta_{\mathbf{y}}$ | yield displacement of column                 |
| $\Delta_m$            | displacement of column at peak load          |
| $\Delta_u$            | ultimate displacement of column              |
|                       |                                              |

where  $N_0$  is the applied axial force on the specimens, and  $N_u$  is the axial load carrying capacity of the columns, which is calculated by the simplified formulas described in [25]. The corrosion rate is defined as:

$$\eta = \frac{t_{s0} - t_s}{t_{s0}} \times 100\%$$
<sup>(2)</sup>

where  $t_{s0}$  is the initial thickness of the steel plate;  $t_s$  is the remaining thickness after corrosion. The designed corrosion rates are 0, 10%, 20% and 30% respectively.

Table 1 shows a summary of the tested specimens, where  $\xi$  represents the confinement factor to account for the 'composite action' between the steel tube and core concrete, and was defined as follows [26]:

$$\xi = \frac{A_s f_y}{A_c f_{ck}} \tag{3}$$

where  $A_s$  is the cross-sectional area of steel tube after corrosion,  $f_y$  is the yield strength of steel, Ac is the cross-sectional area of the core concrete,  $f_{ck}$  is the characteristic compressive strength of concrete. The value of  $f_{ck}$  is calculated to be 67% of the cube strength of concrete ( $f_{cu}$ ). The following naming rules are employed to distinguish specimens: 1) the two initial characters 'CC' represents the circular column section; 2) the Arabic numerals before hyphen stand for the axial force ratio; 3) the Arabic numerals after hyphen represent the corrosion rate. For example, the specimen 'CC0.2-10' stands for the circular column with designed axial force ratio of 0.2 and corrosion rate of 10%.

| No. | Specimen ID | D (mm) | <i>t<sub>s</sub></i> (mm) | L (mm) | $f_{cu}$ (MPa) | n   | η (%) | ξ    | Yield      |                 | Peak       |                 | Ultimate   |                 |
|-----|-------------|--------|---------------------------|--------|----------------|-----|-------|------|------------|-----------------|------------|-----------------|------------|-----------------|
|     |             |        |                           |        |                |     |       |      | $P_y$ (kN) | $\Delta_y$ (mm) | $P_m$ (kN) | $\Delta_m$ (mm) | $P_u$ (kN) | $\Delta_u$ (mm) |
| 1   | CC0.2-0     | 114    | 4.00                      | 1500   | 60             | 0.2 | 0     | 1.49 | 56.4       | 16.18           | 73.55      | 35.85           | 62.69      | -               |
| 2   | CC0.2-10    | 114    | 3.62                      | 1500   | 60             | 0.2 | 9.48  | 1.18 | 52.3       | 15.78           | 69.40      | 33.25           | 58.99      | 44.21           |
| 3   | CC0.2-20    | 114    | 3.23                      | 1500   | 60             | 0.2 | 19.25 | 0.95 | 45.8       | 15.67           | 58.80      | 29.85           | 51.00      | 37.10           |
| 4   | CC0.2-30    | 114    | 2.84                      | 1500   | 60             | 0.2 | 29.00 | 0.85 | 40.7       | 14.89           | 51.50      | 29.50           | 44.12      | 34.04           |
| 5   | CC0.4-0     | 114    | 4.00                      | 1500   | 60             | 0.4 | 0     | 1.49 | 53.1       | 12.82           | 73.75      | 33.95           | 62.69      | 60.75           |
| 6   | CC0.4-10    | 114    | 3.63                      | 1500   | 60             | 0.4 | 9.25  | 1.19 | 46.3       | 11.15           | 65.80      | 33.55           | 56.49      | 36.64           |
| 7   | CC0.4-20    | 114    | 3.21                      | 1500   | 60             | 0.4 | 19.75 | 0.94 | 40.2       | 10.37           | 56.85      | 23.55           | 48.33      | 33.23           |
| 8   | CC0.4-30    | 114    | 2.81                      | 1500   | 60             | 0.4 | 29.75 | 0.84 | 34.8       | 8.85            | 46.70      | 17.90           | 39.70      | 21.60           |
| 9   | CC0.5-0     | 114    | 4.00                      | 1500   | 60             | 0.5 | 0     | 1.49 | 52.6       | 11.44           | 70.35      | 31.50           | 58.36      | 39.42           |
| 10  | CC0.5-10    | 114    | 3.60                      | 1500   | 60             | 0.5 | 10.00 | 1.18 | 49.3       | 12.42           | 62.65      | 27.50           | 53.25      | 38.66           |
| 11  | CC0.5-20    | 114    | 3.19                      | 1500   | 60             | 0.5 | 20.25 | 0.94 | 46.1       | 11.60           | 57.70      | 24.40           | 49.05      | 34.48           |
| 12  | CC0.5-30    | 114    | 2.78                      | 1500   | 60             | 0.5 | 30.50 | 0.83 | 39.3       | 10.11           | 48.85      | 23.45           | 41.52      | 25.73           |

(1)

Download English Version:

# https://daneshyari.com/en/article/6778444

Download Persian Version:

https://daneshyari.com/article/6778444

Daneshyari.com