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A B S T R A C T

This paper is focused on the initial stress affected wave dispersion in mounted graphene. To capture the size-
dependent and shear deformation effects, the second-order shear deformation theory (SSDT) and nonlocal strain
gradient elasticity theory are used to model the graphene. A size-dependent shear deformation plate model is
established on the basis of the orthotropic constitutive equations, the nonlocal strain gradient theory as well as
the SSDT. Analytical solutions are developed for the wave frequency and phase velocity. The influences of small-
scale parameters, initial stress and elastic medium on wave propagation behaviors of the graphene sheets are
explored. It is found that the developed model reasonably interprets the softening effects of flexural frequencies
and phase velocities. Unlike the classical (scaling-free) model, the developed size-dependent model shows a
reasonably good agreement with the experimental frequencies and phase velocities. The wave frequencies and
phase velocities of single layer graphene sheets (SLGS) will decrease with increasing compression load, and can
increase by increasing tension load. The developed size-dependent 2D continuum model is hopeful to provide a
possible theoretical approach to explore the wave behaviors of Graphene-like 2D materials.

1. Introduction

Due to wonderful physical and mechanical properties, single layer
graphene sheet (SLGS) has received significant attention from re-
searchers and engineers [1]. With the development of the nanodevices
and nanotechnology, SLGS are now one of the usage components in
many fields such as nano-electromechanical system (NEMS) [2]. Hence,
accurate prediction of nanostructures vibration specifications becomes
obligatory for fundamental researches and engineering designs. Often,
experimental, molecular dynamic simulation and continuum mechanic
approaches were used for analysis of nanostructures. On one hand,
because of its simplicity and accuracy, continuum mechanics ap-
proaches are more common to use for predicting the mechanical be-
haviors of nanostructures in the large scaled systems. On the other
hand, classical continuum mechanic theories cannot consider the size
effects alone. Experimental and molecular dynamic approaches have
showed that size effect plays an important role when structures become
small. To fix this drawback, researchers suggested new micro and nano
continuum theories, such as the strain gradient elasticity theory [3], the
nonlocal elasticity theory [4,5] and the couple stress theory [6].

The nonlocal stress is assumed as a convolution integral over a
nonlocal kernel function. It makes the governing equations be

complicated integro-differential equations. An approximate differ-
ential-type constitutive relation was therefore suggested for a specified
kind of kernel function [7]. Owing to the simplicity of differential-type
constitutive relation, many nonlocal differential-type models have been
recently developed to be applied for studying the scaling effects on the
static and dynamic behaviors (such as free and force vibration, buck-
ling, and dispersion of elastic waves) of rods [8–11], beams [12–16]
and plates [17–24]. Moreover, a critical review of the static and dy-
namic behavior of nanobeams via nonlocal elasticity theory is sug-
gested by Eltaher et al. [25]. Nevertheless, it has been pointed out by a
large number of studies that the paradox or inconsistency appeared in
the mechanical behaviors of one-dimension (1D) problems modeled on
the basis of nonlocal differential-type constitutive relation
[26–29,16,30]. This is because these problems were analyzed with
having to involve boundary conditions. It has been reported that these
problems with having to involve boundary condition have certain
boundary conditions between the nonlocal differential and integral
formulations, see e.g., [31,32,27]. Recently, it was shown by Romano
et al. [33,34] that, in nonlocal elastic problems on bounded structural
domains, Eringen nonlocal integral model [7] leads to ill-posed pro-
blems since the stress field outputted by the strain-driven nonlocal
constitutive relation is incompatible with equilibrium requirements. Ill-
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posedness can be partially addressed by adopting a local-nonlocal
mixture model for the strain-driven law [31,32,27,35,36], as compre-
hensively discussed in [37]. The new stress-driven model, first proposed
in Romano and Barretta [38], is able to overcome the intrinsic incon-
sistency of the strain-driven nonlocal theory of elasticity. For wave
propagation studied here, we assume that in-plane waves do not reach
the boundary conditions of nanoplates. That is, in comparison of wa-
velength, nanoplates may be viewed as infinite. Thus, the problem will
be analyzed without considering the boundary conditions. Under such
case, the nonlocal integral formulations are equivalent to the nonlocal
differential models [36].

In Eringen nonlocal theory, the size effects are obtained via as-
suming the stress at a material point in a domain as a function of not
only the strain at that material point but also the strains at all other
material points in that domain. However, this theory cannot satisfy all
of the mechanical problems of graphene sheets. Hence, in the other
theories, strain gradient theory plays the same role to capture of size
effects. The strain gradient theory may be referred to as stress-driven
nonlocal models since the strain of a material point depends on the
stresses in all material points of the domain. The strain gradient elas-
ticity theory has been applied to analyze the mechanical behavior of
plates by Karami and Janghorban [39]. In recent years, owing to the
rapid growth of micro and nano-technology, the size-dependent elas-
ticity theory needs to be improved. Alternatively, the nonlocal strain
gradient theory has been developed by combining of the Eringen non-
local elasticity theory and strain gradient theory, which is earlier sug-
gested in Aifantis [40] and has been recently used in the literature
[29,41–43]. Until 2015, Lim et al. [44] showed that the nonlocal strain
gradient theory takes more accuracy results in comparison with non-
local elasticity theory, especially in wave propagation problems. In the
following, this theory has been recently frequently-used in various
mechanical problems such as wave propagation, vibration, bending and
buckling [45–64]. It was recently reported by Zhu and Li [36] that the
nonlocal strain gradient theory may merely be referred to as a combi-
nation of the strain-driven and stress-driven nonlocal theories.

Recently, many researchers used the nonlocal strain gradient theory
to study the wave propagation in mechanical structures. Ebrahimi and
Dabbagh [65] proposed a basic report about the influence of nonlocal
and strain gradient parameter on the flexural wave propagation re-
sponses of functionally graded nanoplates. They investigated the effects
of external works (such as magnetic potential, electric voltage and
material distribution in the absence and presence of both length scale
parameters) via refined shear deformation plate theory. According to
their results, these parameters can change the effect of external works
on the values of the wave frequency and phase velocity of nanoplates.
The influence of the magnetic field on the wave propagation of func-
tionally graded nanoplate based on the nonlocal strain gradient theory
was studied by Karami et al. [66]. In addition, Nami and Janghorban
proposed an analytical solution 3D elasticity for investigating bulk
waves of orthotropic nanoplates using nonlocal elasticity theory [67].
This work is a useful guide to understand the wave behaviors of the
whole range of graphene sheets.

In view of all articles that have been said so far, very few studies
have tried to propose the model for analysis of orthotropic nanoplates
via nonlocal strain gradient theory. Owing to the natural orthotropic
property of SLGS, the orthotropic constitutive equations should be
taken into account to develop high-precision plate models for SLGS. To
capture the size-dependent and shear deformation effects, the second-
order shear deformation theory (SSDT) and nonlocal strain gradient
elasticity theory will be used to model the graphene. It will be reported
that, the developed model reasonably interprets the softening effects of
flexural frequencies and phase velocities, and shows a reasonably good
agreement with the experimental frequencies and phase velocities.
Furthermore, the influences of small-scale parameters, initial stress and
elastic medium on wave propagation behaviors of the graphene sheets
will be explored.

2. Theoretical formulations

This study considers SLGS modeled by using an orthotropic nano-
plate theory. The configuration of flexural wave propagation in an or-
thotropic nanoplate with initial stress mounted on an elastic medium is
shown in Fig. 1. This structure is subjected to the initial stresses created
by compressive and tension loads while mounted on an elastic medium.
The foremost purpose of this article is to analyze the flexural wave
behaviors of SLGS in the mentioned situations.

To study the size-dependent flexural wave behaviors, we suppose
that the waves do not reach the boundary conditions of SLGS. That is to
say, SLGS may be viewed as a relatively large nanoplate in comparison
of wavelength of interest. Under such case, the flexural wave behaviors
will be analyzed without boundary conditions.

2.1. Second-order shear deformation theory (SSDT)

Extensive studies have been carried out by using classical plate
theory (CPT or the Kirchhoff-Love theory) and first-order shear de-
formation theory (FSDT). Owing to omitting shear deformations and
rotary inertia, the CPT leads to unreliable results for thick and mod-
erately thick plates, which can be improved by considering the FSDT
since it contains a shear correction factor. However, the suitable value
of the shear correction factor, which is dependent on the variation of
Poisson's ratio, geometry, loading and boundary conditions, is often
difficult to predict. To this end, many higher-order-shear-deformation
theories (HSDTs) [68–71] have been presented since they do not need a
shear correction factor and provide the best accuracy than the CPT and
FSDT.

In this section, the equations of motion for investigating wave
propagation in orthotropic nanoplates on the basis of the SSDT are
derived, and then they can be solved analytically to find the wave
dispersion. According to the SSDT [72,71], the displacement compo-
nents of the orthotropic nanoplates can be written as
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By applying the displacement components (1), the strain-displace-
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Fig. 1. The configuration of flexural wave propagation in an orthotropic nanoplate with
initial stress mounted on an elastic medium.
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