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A B S T R A C T

In this article, a two-node finite strip with eight degrees of freedom for the free vibration analysis of pre-stressed
rotating cylindrical shells is formulated. The circumferential mode shape profiles are described exactly using
trigonometric functions. The axial mode shape profiles are approximated by bar and beam shape functions for
membrane and bending displacements, respectively. In this way, a semi-analytical formulation is facilitated so
that discretisation is required only in the axial direction. The accuracy and convergence of the developed finite
strip are confirmed by comparisons with the analytical results. Excellent agreement is observed both for sta-
tionary and rotating shells.

1. Introduction

Shells are widely used as constructive elements in many engineering
structures. Their static and dynamic behaviour has been an important
topic in structural design for a long time [1–3]. As a result, the theory of
shells and plates has been covered in a systematic manner in a number
of books [4–11]. For example, an instructive approach to thin shell
theory, written in a relatively simple way and adapted to the en-
gineering level for practical usage, is presented in [12]. On the other
hand, some authors have covered more specific problems related to the
design of shell-like structures [13,14]. For example, the general theory
and specific discussions regarding shells of revolution exposed to a
uniform load can be found in [15]. Such problems are more particular
for submarine or aircraft pressure hull designs with pronounced axial
symmetry.

In fact, it is often the case that axisymmetric shells rotate around the
axis of symmetry [16–22,24–30]. Rotating shells of revolution are
found in engineering practice in rotor systems of gas turbine engines,
high-speed centrifugal separators, rotating satellite structures, auto-
motive tyres, etc. Rotation makes their dynamic behaviour significantly
more complex. One of the first investigations into the vibration of ro-
tating structures was carried out by Bryan [16]. He studied the vibra-
tions of a rotating ring and described the travelling modes phenom-
enon. These phenomena result from the Coriolis effect, as shown in the
example of infinitely long rotating cylindrical shells [17,18], as well as
in finite rotating cylinders [19,20]. An experimental study on the
flexural vibrations of a thin rotating ring is given in [21]. Furthermore,
the influence of pre-stress on the free vibrations of rotating cylinders
has been studied in [22].

Huang and Soedel [24] used nonlinear strain-displacement re-
lationships [23] to formulate the corresponding set of differential
equations of motion for a rotating cylindrical shell. They exactly solved
the free and forced vibration problem of a simply supported cylindrical
shell by assuming simple sine and cosine displacement functions of the
circumferential and axial variables. In this case, formulating the ei-
genvalue/eigenvector problem results in a characteristic polynomial of
the sixth order. Its solution gives three positive and three negative
natural frequencies.

If the shell does not rotate, the polynomial is bicubic. There are
three pairs of positive/negative frequencies characterised by the same
absolute value. This is physically explained through pairs of backward
and forward rotating modes. The two modes of a pair rotate with the
same speed in opposite directions and thus superimpose into a sta-
tionary mode. The reason why there are three pairs of modes and
natural frequencies is that there are three types of dominant modes:
bending (radial), longitudinal (axial), and shear (circumferential).

If the shell rotates around its axis with a constant speed, then the
polynomial is no longer bicubic. The full sixth order polynomial occurs.
The positive and negative natural frequencies have distinct absolute
values and so-called frequency veering (bifurcation) happens. This
means that the forward and backward rotating modes no longer rotate
with the same rotation speed and thus cannot superimpose into the
stationary modes (standing waves). As a result, with spinning shells the
modes rotate independently. For example, this phenomenon comes
about with tyres rolling over the road surface [25–29]. This sig-
nificantly influences the overall NVH (Noise and Vibration Harshness)
characteristics of the vehicle.

It is very common in the literature on the vibration of cylindrical
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shells, either rotating or stationary, to assume that the two ends of the
shell are simply supported [24,30,31]. This type of boundary support is
sometimes referred to as a shear diaphragm set of boundary conditions
[11,12]. The reason why this set of boundary conditions is often used is
that it is probably the only one for which a relatively simple solution
can be obtained analytically. In other words, mode shapes assumed as
appropriate products of trigonometric functions of the circumferential
and axial variables usually satisfy both the differential equations and
the boundary conditions. This results in a mathematically convenient
model.

However, such a model is not necessarily suitable to describe a
particular engineering problem. For example, although it is very in-
structive to investigate the dynamics of rotating tyres assuming simply
supported edges of a tyre tread-band [24,30,31], it is difficult to accept,
from an engineering point of view, that the tyre sidewall is infinitely
stiff in radial or tangential directions [28,29].

In the case of cylindrical shells with boundary conditions other than
simply supported ones, the mathematics becomes significantly com-
plicated. Closed-form solutions are now difficult to obtain. A number of
investigations have been undertaken to tackle this problem [32–38].
One of the solutions was obtained by assuming the shell displacement
field as a product of Fourier series in the axial direction, and trigono-
metric functions in the circumferential direction [35]. This procedure
has been recently extended to rotating cylindrical shells [36]. The
problem of the free vibration of a rotating cylindrical shell having ar-
bitrary boundary conditions can also be solved by employing the Ray-
leigh-Ritz method. Such a solution, using characteristic orthogonal
polynomials for displacement variations along the axial direction, can
be found in [37].

A complete analytical solution for free vibrations of a rotating
cylindrical shell with arbitrary boundary conditions has recently been
offered in [38]. The equations of motion in [38] are based on the
strain-displacement relationships of Hermann and Armenakas [23].
Circumferential tension due to internal pressure or centrifugal forces,
as well as an elastic foundation in both radial and circumferential
directions, is taken into account. The circumferential mode shape
profiles are described by trigonometric functions. The axial profiles
are assumed as a sum of eight weighted exponential functions. Three
differential equations of motion for an assumed circumferential mode
number lead to a frequency equation in the form of a bi-quartic
polynomial. Eight cases of the four different combinations of the
polynomial roots (real, imaginary and complex) were identified.
Hence, the mode shape axial profiles are described in terms of trigo-
nometric functions, hyperbolic functions and their products. The ap-
plication of the analytical solution was illustrated in the case of a
cylindrical shell with free-free boundary conditions, and excellent
agreement with the experimentally obtained results was confirmed.
The principal advantage of the analytical procedure [38] is very high
accuracy confirmed by experiments.

However, the procedure requires the discovery of a proper case
among the eight types of axial mode shapes for which a solution can be
found even for a single cylindrical shell. If a shell structure consists of n
cylindrical shells of different particulars, the number of combinations to
find the proper one is 8n. Hence, although numerical examples solved in
this way may be very useful as benchmarks for the evaluation of various
numerical methods, the analytical procedure is not quite suitable for
practical use.

In practical situations, the problem of the vibration of cylindrical
shells with boundary conditions other than simply supported ones could
be solved by using the finite element method (FEM). In fact, complex
built-up shell structures, which may be approximated by a number of
connected cylindrical or other types of shells, could be conveniently
tackled by the finite element method. For this purpose, special shell
finite elements based on the waveguide finite element method would be

suitable. Such finite element analyses have so far been used to tackle
stationary shell structures [42,43]. Alternatively, the homogeneity of
the cylinder around the circumference and along the axis has been
exploited to post-process the FE model of a small rectangular segment
of the cylinder using periodic structure theory to obtain the wave
characteristics of a cylinder [44]. Since there is an integer number of
wavelengths around the circumference of a closed circular cylinder, one
of the integrals in the inverse Fourier transform becomes a simple
summation, whereas the other can be resolved analytically using con-
tour integration and the residue theorem [44].

Although the semi-analytical waveguide approaches of [42–44]
may be very convenient and useful for a variety of problems, none of
the semi-analytical finite element formulations developed so far a)
allow for considering the typical effects of rotation (rotating modes and
frequency veering) or b) can take into account the effects of pre-stress
due to possible pressurisation and/or centrifugal forces. Therefore, the
state-of-the-art in the considered field motivates further developments
of finite elements especially tailored to model rotating and pre-stressed
cylindrical shells.

One of the very effective numerical methods which reduces the
two-dimensional problem into a one-dimensional one in the case of
simply supported two opposite edges or shells of revolution is the fi-
nite strip method (FSM) [45]. Due to this advantage, the method is
widely used in the structural analysis of engineering structures. Some
recent publications on different problems are included in the reference
list [46–54]. All the articles are published in the Thin-Walled Struc-
tures journal as a major forum for the development of the finite strip
method.

In this paper, a new finite strip for modelling pre-stressed rotating
cylindrical shells is formulated. The energy approach is used with the
strain-displacement relationships given in [23,24] to develop and va-
lidate such a special finite strip [45]. The strip element is deliberately
made quite simple, including two nodes and eight degrees of freedom
(d.o.f.). Its reliability is checked in a number of numerical examples by
comparing the numerical results with the analytical ones. Excellent
agreement is observed for all the boundary conditions considered.

2. Strain and kinetic energy of a rotating cylindrical shell

A thin cylindrical shell rotating around its axis of symmetry with
constant angular speed Ω is shown schematically in Fig. 1. The shell
dimensions are the following: L is the length, a is the radius, and h is
the thickness. The shell mid-surface is defined in the cylindrical co-
ordinate system, where x and ϕ are the axial and angular coordinates,
respectively. The displacement of a point P on the mid-surface, whose
position is defined by x and ϕ, is specified by the axial, tangential and
radial displacement components u, v and w, respectively, as shown in
Fig. 1.

The problem of shell vibration can be analysed by directly solving
differential equations of motion or by minimising the total energy with
assumed mode shapes, i.e. by applying the Rayleigh-Ritz method. The
equations of motion can be derived by considering the equilibrium of
the internal and external forces on an infinitesimally small element
[12]. Differential equations of motion can also be obtained by mini-
misation of the total energy with respect to displacements, i.e. by ap-
plying Hamilton's principle.

In the case of a rotating cylindrical shell, the latter approach is more
convenient, as shown for example in [37]. Love's simplification [55]
allows for the shell strain field to be separated into membrane strains
and bending strains [24]

= + = + = +ε ε zκ ε ε zκ ε ε zκ, ,͠ ͠ ͠x x x ϕ ϕ ϕ xϕ xϕ xϕ (1)

where εi are the membrane strains, κi denote the change in curvature
due to the shell bending, and z is the distance of a shell layer from the
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