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A B S T R A C T

The work of this paper deals with the in-plane material optimization with the objective of minimizing the
amount of the nano-reinforcement required to satisfy the desired buckling constraints. The minimization of the
reinforcement is necessary for nano-reinforced composites because the price of the reinforcement is very high.
Three types of panels are considered; (1) unstiffened panel, (2) panels with cutouts, and (3) stiffened panels. The
in-plane distribution of the reinforcement is represented using the polynomial expansion technique which is also
extended to model non-rectangular domains via coordinates transformation. It was found that material grading
can saves a very significant amount of the reinforcement up to 200% relative to homogenous panels. The saving
of the reinforcement depends on four factors; (1) the problem nature, (2) the boundary conditions, (3) the
applied loads, (4) the direction of the material gradings.

1. Introduction

A Functionally graded structure (FGS) is a structure which has a
continuous variation of the material properties in one or more of its
dimensions. This concept was first proposed in Japan in 1987 during
the design of the thermal shield of spacecraft [1–3]. The shield should
have a gradual variation of the thermal expansion coefficients to sustain
the high heat on the outer side and at the same time to be consistent
with the thermal expansion of the internal structure to avoid the stress
concentration at the interface. Since that time much progress has been
made in the design, analysis, and the manufacturing of functionally
graded structures. A comprehensive review of the progress in the ana-
lysis and design can be found in [4–9]. Regarding the manufacturing of
FGS, the available technology allows the production of very complex
shapes with material grading in multiple directions. Some of these
techniques are the innovative thermal spraying technique which sprays
molten materials onto a surface. This Technique allows the process of
very fine particles in the range of the nanometer. Another technique is
the Laser Engineered Net Shaping (LENS) which allow the manu-
facturing of 3D parts by injecting metal powder into a molten medium
created by a high-powered laser beam. More of the manufacturing
techniques can be found in [10–14].

The material gradation throughout the structure can be represented
mathematically by numerous ways. This first method is the power-law
representation in which the volume fractions of the compositions are
represented by monomials with two design parameters; the monomial's

coefficient, and the power. The second method is the exponential re-
presentation where the volume fraction is represented by an ex-
ponential function with also two design parameters; the coefficient and
the exponential function argument which is usually a linear function of
the dimension in which the grading is desired. It can be seen that these
two methods have one disadvantage which is their monotonic nature,
so the volume fraction is either a decreasing or an increasing function
which somehow hinders the design flexibility. Aragh et al. [15] mod-
ified the power-law by adding a linear term to the traditional power-
law and an overall power to increase the design parameters to three.
Still the variation nature is limited and attention should be paid to the
parameters values because the volume fraction can exceed the per-
missible range which is between 0 and 1, so the optimization process
can be tricky. The third method is the grid-based representation in
which a grid is created over the structure, and the volume fraction at
each node (control point) is considered as a design variable, then any
interpolation technique like the B-spline techniques can be used to get
the global distribution [16]. This method provides much more flex-
ibility compared to the first two methods, but requires more design
variables which makes it computationally expensive. The fourth
method proposed in [17] is the polynomial expansion of the volume
fraction where the expansion's coefficients are the design variables. The
volume fraction is maintained within the permissible limits over the
structure domain via sets of linear and non-linear constraints. This
method provides flexible designs with a low number of design variables
which makes it a link between the power-based methods and the grid-
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based methods, so it will be adopted here to study the mechanical
buckling of functionally graded panels.

Some of the work done in the literature regarding this topic is the
work of Feldman and Aboudi [18] where the distribution of the Silicon
Carbide volume fraction in an Aluminum matrix was optimized to
maximize the buckling strength. The volume fraction was represented
by a series expansion resulted from the tensor product of the Legendre
polynomials in three dimensions. The only mentioned constraint was
that the overall volume fraction should not exceed a certain limit. The
used optimization technique, the constraints on the expansion coeffi-
cients, nor the number of terms used in the expansion have not been
mentioned though.

Chu et al. [19] also considered the buckling of plates with in-plane
inhomogeneity where the material grading is represented by the power
and exponential laws. Lal and Saini [20] studied the buckling of simply
supported plates under linearly varying in-plane loads with ex-
ponentially graded material properties along the direction perpendi-
cular to the loads. Bodaghi and Saidi [21] studied the buckling of plates
resting on elastic supports with nonlinear in-plane loading, and mate-
rial grading throughout the plate's thickness for different types of
boundary conditions.

Nowadays, there is a keen interest in the design of nanocomposite
structure because of their superiority over the traditional fiber or mi-
crocomposites in terms of the stiffness and strength. Many research
articles have been published regarding the bucking of composite plates
and shells reinforced by carbon nanotubes [22–30]. Most of that work
considered the material grading throughout the thickness using the
linear variation or via the power-law. The cost of the nano reinforce-
ment is very high [31] compared to micro or long fiber reinforcements
which necessitates a structure to be designed with minimum re-
inforcement. So, the objective of this work is to optimize the in-plane
distribution of the reinforcement to satisfy certain buckling strength
constraints. Silicon Carbide particles-reinforced Aluminum matrix is
considered to study the buckling of unstiffened, stiffened panels, and
panels with cutouts. The volume fraction of the Silicon Carbide is
presented using the polynomial expansion approach which will be ex-
tended here to optimize complex non-rectangular domain via domain
transformation.

2. The theoretical model

2.1. The polynomial expansion of the volume fraction

The polynomial expansion representation as given in [17] is based
on the decomposition of the volume fraction into two or more poly-
nomials (components) in terms of non-dimensional coordinates

≤ ≤x y(0 *, * 1) as follows:
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The polynomial expansion coefficients α γ, andi i are the design
variables to be obtained through the optimization process. The sets of
constraints on the coefficients required to maintain the value of the
volume fraction within the permissible limits ≤ ≤v x y(0 ( *, *) 1)f
throughout the structure domain Ω x y( *, *), can be developed as given in
[17] by considering the values of the volume fraction components at
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The integration of the volume fraction components over the struc-
ture domain ≤ ≤Ω x y0 ( *, *) 1 yield:
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This constraint set imposes that the overall Silicon Carbide volume
fraction ∬=V v dx dy* *f SiC f is less than unity, it also improves the
performance of the optimization process. If C1 continuity is desired
across the symmetry lines ( = =x x y y*or * if existed), then the first
derivatives give:
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This set can also be solved to get the maxima and minima of the
volume fraction within the structure domain to ensure that it does not
violate the permissible limits. The range of each coefficient is as fol-
lows:

≤ ≤ − ≤ ≤α γ α γ0 ( , ) 1, 1 ( , ) 1o o j i (6)

The range of α γando o are obtained by considering the value of the
volume fraction at the origin, while the range of α γandj i is optional.
Faster convergence is obtained for the given range in Eq. (6) specially if
heuristic approaches are used for optimization.

Fig. 1. Four nodded quadrilateral element with five degrees of freedom per node. ξ η( , )
are the element’s local axes, while x y( , ) are the global axes.

Fig. 2. Square panel under in-plane uniaxial loading.

Table 1
The optimal Silicon Carbide distribution for different expansion orders for the simply
supported panel under uniaxial in-plane loading.

Expansion order v x( *)f Vf SiC

Constant 0.4234 0.1793
Linear x0.8222 * 0.1690
Quadratic + −x x0.0795 * 0.5 *2 0.1704
Cubic + − *x x x0.8726 * 0.2763 * 0.47512 3 0.1678
Quartic + − +x x x x0.8311 * 0.4943 * 0.7971 * 0.1429 *2 3 4 01678
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