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A B S T R A C T

Despite its importance in some structures, shear deformation is systematically neglected by most static structural
system identification methods. This paper analyzes for the first time in the literature the effect of this deformation in
the static inverse analysis of thin web bridges. This study is focused on the observability techniques. The most recent
formulation found in the literature is based onthe Euler-Bernoulli beam theory. This formulation is unable to identify
correctly the characteristics of a structure (such as flexural stiffness) when shear deformation is not negligible. To
solve this problem, the observability method is updated according to Timoshenko's beam theory. This formulation
uses an algebraic method which combines a symbolical and a numerical application. Thus, the updated observability
formulation is able to obtain not only the flexural stiffness but also the shear one. Besides this, a parametric equation
of the estimates is obtained for the first time in the literature. Some examples of growing complexity are used to
illustrate the validity of the the proposed formulation formulation.

1. Introduction

Damage in structures might produce changes in their mechanical
properties. In order to quantify the magnitude of this damage Structural
System Identification (SSI) might be used. This process is based on a subset
of measured inputs and outputs (e.g. forces and/or displacements).
Numerous papers about SSI have been written over the years. Sanayei
et al. [1,2], Yan and Golinval [3] or Liao et al. [4], proposed various
methods to deal with different problems in SSI.

The subset of measured inputs can be obtained by non-destructive tests
that measure the structural response under a certain load case. According
to the load nature, these tests can be classified as dynamic [5,6] or
static [7–9]. Focusing on static tests, Sanayei and Onipede [10] presented
an iterative optimization-based algorithm of the displacement equation
error function for the parameter identification based on static test mea-
surements. Banan et al. [11,12] proposed an optimization method to es-
timate member constitutive properties of the Finite Element Model, FEM,
from measured displacements under static loading. Sanayei et al. [13]
used measured strains in a real bridge under static truck loads for FEM
updating. However, in all these methods it is assumed that shear stiffness
does not govern the problem and, therefore, it is not taken into account.
This assumption is traditionally used in most SSI methods (see [14]).

Matrix methods of structural analysis are universally accepted in

structural design. These methods enable a rapid and accurate analysis
of complex structures under both static and dynamic conditions.
However, when applying matrix methods, the system must be modeled
as a set of simple, idealized elements interconnected at the nodes.
Matrix SSImethods are based on simplified structural models too. These
include axial, shear and flexural deformation. Therefore, neglecting
shear deformation can be assumed as a modeling error which is a
simplifying assumption well justified in most of the structures.
However, in some cases for both direct and inverse analysis, this
modeling error can lead to unjustified rough results.

The assumption of neglecting shear deformation is explained by the
fact that, for most structures, this effect is usually much smaller than
the flexural one. Nevertheless, shear deformation might play an im-
portant role in some structures, such as deep beams. Eurocode EN 1992-
1-1:2004 [15] defines deep beams as a beam for which the span is less
than three times the overall section depth. ACI committee 318 [16],
defines these elements based on two criteria: beams with clear spans
equal to or less than four times the overall member depth or beams with
concentrated loads within twice the member depth from the face of the
support. In these structures, neglecting the shear deformation may af-
fect adversely the stiffnesses estimated by SSI methods. Shear de-
formation also might be an important factor to be considered in some
structures, for example, in high rise buildings (see [17,18]). In this
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field, Li et al. [19] modeled slender structures such as high rise build-
ings and chimneys as cantilevers with both flexure and shear de-
formation. Recently, Ebrahimian and Todorovska [20] presented a non-
uniform Timoshenko beam model of a building, with piecewise con-
stant properties along the height, together with an algorithm for
structural system identification from earthquake records. In both works,
shear stiffness is clearly taken into account on damage detection.
However, other authors neglect this phenomenon. Kang et al. [21]
presented a system identification scheme in time domain to estimate
stiffness and damping parameters of a structure using measured accel-
eration. Lei et al. [22] proposed an algorithm based on the extended
Kalman estimator approach for the identification of structural para-
meters and unknown excitation of high rise shear-type buildings with
partial acceleration responses. These papers are limited to identify only
the flexural stiffness and the story stiffness respectively.

According to Sahraei and Mohareb [23], shear deformation is tra-
ditionally neglected in thin-walled structures. Nevertheless, a number
of studies discourage this assumption. Bhat and Oliveira [24] proposed
the formulation of the shear coefficient of thin-walled prismatic beams.
A formulation to incorporate the effects of shear deformation in thin-
walled structures was proposed by Chen and Blandford [25] and Back
and Will [26]. Shakourzadeh et al. [27] and Erkmen and Mohareb [28]
studied the torsion analysis of thin-walled beams including the shear
deformation effects. Van Phan and Mohareb [29] showed the im-
portance of incorporating shear deformation effects when capturing
predominantly torsional responses. Erkmen [30] studied the formula-
tion for buckling analysis of thin-walled beams incorporating the shear
deformation. Poul et al. [31] studied experimentally CFRP strengthened
thin plated under shear loading. Chen et al. [32] analyzed the dynamic
behavior of shear deformable sandwich beams. Hossain et al. [33]
studied the impact shear resistance of double skin composite walls.
Tong et al. [34] analyzed the behavior of plates subjected to combined
bending and shear loading. Rasool and Singha [35] studied the non-
linear behavior of shear panels. Kim and Choi [36], Henriques et al.
[37] and Sabouri-Ghomi et al. [38] studied the effects of shear de-
formation in composite beams. Analyses of the effect of shear in thin
web bridges can be found in [39,40].

The literature review shows that the effect of shear deformation is
mainly based on the structural response at the element level. The stu-
dies about structural system identification including this phenomenon
are restricted to dynamic excitations and the effects on static tests are
not studied. This is the case of the observability techniques [41,42]. As
most of the static methods presented in the literature, this method
neglects the effect of the shear deformation into the structural system
identification analysis. This paper analyzes how sensitive observability
techniques are to shear deformation effects. Moreover, in order to take
the shear deformation into account, a new formulation including the
shear effects in observability simulation is proposed. All numerical si-
mulations are based on measurement error free data obtained from
numerical analyses. This paper will focus on evaluating the modeling
error linked with shear effects, being numerical and measurement er-
rors on structural system identification by observability treated else-
where [43,44].

This article is organized as follows. In Section 2 the original ob-
servability method for structural system identification is briefly pre-
sented. This technique does not include the shear deformation. To il-
lustrate the important role of this deformation in the identification of
structures and to motivate the paper an example is analyzed. Section 3
introduces a new formulation to include the shear deformation into the
observability analysis. To illustrate the application of this algorithm, a
step by step example is presented. In addition, a numeric example is
analyzed. Section 4 presents the application of the proposed algorithm
for the structural system identification of a composite thin web bridge
during its cantilevered construction. Finally, the conclusions obtained
are displayed in Section 5.

2. Observability analysis without shear deformation

The stiffness matrix method is the most common implementation of the
Finite Element Method (FEM) for structural analysis. The implementation of
this method requires that the structure is modeled as a set of simple,
idealized elements interconnected at the nodes. The material and stiffness
properties of these elements are then compiled into a single matrix equation
which governs the behavior of the entire idealized structure. In 2D, the
traditional stiffness matrix [K] for a six degrees of freedom (two deflections
(u and v) and one rotation (w) at the initial and final beam element nodes),
beam element of length L and constant cross-section is:
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where E, A and I are Young's modulus, area and inertia respectively.

2.1. Direct analysis of the stiffness matrix method

In static structural analysis, a statement of the equilibrium condi-
tions together with strength of materials theory leads to a relation be-
tween forces and displacements that has the form of the following
system of equations:

=K δ f[ ]·{ } { }, (2)

where δ{ } and f{ } are the vectors of displacements and forces, respec-
tively, in which the stiffness matrix is a singular matrix that leads to a
system with infinite solutions For a more detailed explanation about the
unicity of the solution of his kind of polynomial equation systems the
reader is addressed to [50,51].

2.2. Inverse analysis of the stiffness matrix method by observability
techniques

As it was mentioned in the introduction, in actual structures, unknown
parameters, such as the flexural stiffness EIj or axial stiffness EAj of ele-
ment j, may appear into the matrix K[ ]. These unknowns might be due to
damage (e.g. by material degradation, such as carbonation or corrosion, or
accidental actions, such as fires or impacts) or other uncertainties (e.g. lack
of knowledge about the mechanical properties of the material). If the
external forces introduced into a structure in a non-destructive test are
known and some displacements are measured, the observability method
can be applied into the SSI to found the values of these unknown para-
meters. Taking Eq. (2) where the matrix K[ ] is partially unknown and with
the aim of determining the value of the unknown stiffnesses EA and EI( )j j
a modified system of equations can be rewritten as:

=K δ f[ *]·{ *} { }, (3)

in which the products of unknowns are located in the modified vector of
displacements δ{ *} and the modified stiffness matrix K[ *] is a matrix of
known coefficients with different dimensions than the initial stiffness
matrix K[ ]. The new system leads to a non-linear problem due to the fact
that unknown parameters, such as axial stiffness EAj and flexural stiffness
EIj of the cross sections are multiplied by the unknown horizontal dis-
placements u( )i , vertical displacements v( )i and rotations at the ith node
w( )i of vector δ{ *}. This fact implies that non-linear products of variables,
such as EA uj i, EA vj i, EI uj i, EI vj i and EI wj i might appear, leading to a
polynomial system of equations. These kinds of problems usually appear in
science and engineering fields, (see [46,47]). Depending on the known
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