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A B S T R A C T

The continuous strength method (CSM) is a recently developed deformation-based design method for metallic
structures. In this method, cross-section classification is replaced by a normalized deformation capacity, which
defines the maximum strain that a cross-section can endure prior to failure. This limiting strain is used in
conjunction with an elastic, linear-hardening material stress-strain model to determine cross-section capacity
allowing for the influence of strain hardening. To date, the CSM has been developed for the determination of
cross-section capacity under normal stresses (i.e. compression, bending and combined loading), where it has
been shown to offer more accurate predictions than current codified methods. In this paper, extension of the
CSM to the determination of shear resistance is described. The relationship between the normalized shear de-
formation capacity, referred to as the shear strain ratio, and the web slenderness is first established on the basis
of experimental and numerical data. The material model and proposed resistance functions are then described.
Comparisons of the developed method with the ultimate shear capacity of a series of tested stainless steel plate
girders show that improved resistance predictions of test capacity over current design methods are achieved.

1. Introduction

The current codified approach for the calculation of the compres-
sion, bending and shear resistances of stainless steel cross-sections has
been observed throughout published studies [1–6] to be conservative in
the cases of elements of low slenderness. This may be attributed to: (1)
the assignment of cross-sections to discrete behavioural classes and (2)
assuming the maximum attainable stress is the 0.2% proof stress fy (i.e.
an elastic, perfectly plastic approximation to the material stress-strain
curve and ignoring strain hardening). With initial cost and hence design
efficiency being of paramount importance in the selection of stainless
steel for main structural components, the application of more sophis-
ticated design methods, exploiting the true material behaviour, such as
the continuous strength method (CSM), is considered to be warranted.

Following the successful application of the CSM to stainless steel
cross-sections under compression, bending and combined loading
[1–6], this paper presents developments of the method towards its ex-
tension to the calculation of shear resistance. A review of the key
components of the CSM is first presented. Test and numerical data
collected from Saliba and Gardner [7] and Saliba et al. [8] have been
utilized to establish the preliminary shear base curve and subsequently
the CSM shear design equations. The effect of applying the CSM to
estimate the shear resistance and bending resistance of plate girders has
been evaluated considering two scenarios: (1) the web contribution to

the shear resistance calculated according to the EN 1993-1-4 [8,9]
design equations but the flange contribution and the bending resistance
of the cross-section calculated with allowance for strain hardening ac-
cording to the CSM and (2) both web and flange contributions to the
shear resistance determined using the CSM for shear presented herein
and the bending resistance also calculated according to the CSM.

2. Literature review

Initial research into the shear resistance of slender plate girders,
carried out by Bleich [10] and later by Basler et al. [11,12], assumed
that a theoretical tension field extending over the whole depth of the
web is formed once shear buckling occurs. The shear resistance of plate
girders was considered accordingly as the sum of the buckling and
postbuckling resistances of the web only, ignoring the flange con-
tribution. This approach was found by Calladine [13] and Porter et al.
[14] to be conservative, and was developed further by Rockey et al.
[15,16] to improve its accuracy, though shortcomings remained for the
case of plate girders with widely spaced transverse web stiffeners.

ENV 1993-1-1 (1992) [17] allowed the calculation of shear re-
sistance for carbon steel plate girders using either the tension field
method or the simple post critical method [18], though these two
methods were replaced [19–21] by improved design equations in the
final EN standard. The current design equations for shear buckling for
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carbon steel sections, included in EN 1993-1-5 [22], are based on the
rotated stress field method developed by Höglund [19,23,24]. The ro-
tated stress field method accounts for the postbuckling shear strength of
both unstiffened and stiffened webs and takes into consideration the
flange contribution.

In EN 1993-1-5 [22], the ultimate shear resistance Vb,Rd is defined
as the sum of the web shear buckling resistance Vbw,Rd and the flange
contribution Vbf,Rd as given in Eq. (1).
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where the influence of strain hardening is considered through the
parameter η, hw is the web depth, tw is the web thickness, fyw is the
yield strength of the web, and γM1 is a partial safety factor.

The web contribution Vbw,Rd is given by Eq. (2):
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where χw is the web shear buckling reduction factor.
The flange contribution Vbf,Rd is defined by Eq. (3):
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in which bf is the overall flange width, tf is the flange thickness, fyf is the
yield strength of the flange, MEd is the coexistent design bending mo-
ment, Mf,Rd is the moment resistance of the flanges alone and finally,
the longitudinal distance of the plastic hinges that form in the flanges
from the transverse stiffeners, c, is given by Eq. (4):
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where a is the distance between the transverse stiffeners.
The interaction between shear and bending moment commonly

arises in practice and has been the subject of numerous studies
[10,11,25–29]. EN 1993-1-5 (2006) [22] prescribes a reduced bending
resistance when the coexistent shear force exceed 50% of the shear
resistance.

For stainless steel, the first codified shear resistance design equa-
tions were presented in the prestandard ENV 1993-1-4 (1996) [30]. The
equations were developed on the basis of an experimental study carried
out by Carvalho et al. [31] and the simple post critical method of ENV
1993-1-1 (1992) [17], with adjustments to account for the particular
nonlinear material characteristics of stainless steel. These equations
were later shown by Olsson [32] to be conservative and revised equa-
tions were included in the final EN standard, EN 1993-1-4 (2006) [33].
The improved shear design equations were based on the rotated stress
field method and are of similar form to those given in EN 1993-1-5
(2006) [22], but with modified functions for the shear buckling re-
duction factor χw, no differentiation between rigid and non-rigid end
posts, and an alternative definition of the distance c, as given in Eq. (5).
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Further improvements to the design rules were proposed in [34–36]
and most recently by Saliba et al. [8], who considered an enlarged pool
of experimental data and introduced a distinction between web panels
with rigid and non-rigid end posts. These proposed equations are pre-
sented in Table 1, and, following a recent amendment, are now in-
corporated into EN 1993-1-4:2006+A1:2015 [9].

3. The CSM for the determination of compression and bending
resistances

3.1. Overview

The continuous strength method (CSM) [1] is a recently developed
method which offers an alternative approach to calculating the re-
sistance of metallic cross-sections. Contrary to the traditional approach
which assumes elastic, perfectly plastic material behaviour, the CSM
allows exploitation of material strain hardening, such as that exhibited
by stainless steel and aluminium. The CSM considers local buckling in
the elastic or inelastic range and the associated limiting strain to be the
key physical restriction to the exploitation of the spread of plasticity
and strain hardening of the material. Hence, the maximum attainable
failure stress of a stainless steel cross-section is considered as a con-
tinuous function of the material properties, the geometry of the cross-
section and the imposed loading, rather than simply a material specific
stress (i.e. the yield stress).

The CSM deviates from traditional cross-section classification by
adopting a continuous relationship between cross-sectional slenderness
and deformation capacity. The deformation capacity of the cross-sec-
tion is determined from an experimentally derived ‘base curve’ which
links the limiting strain at failure due to local buckling εcsm to the cross-
section slenderness [1]. The stress corresponding to this limiting failure
strain, is then determined from the material model, which incorporates
strain hardening.

A detailed description of the development of the CSM and its suc-
cessful application to stainless steel, aluminium alloys, high strength
steel and carbon steel is presented in [1,38–40], while the most recent
developments and improvements to the method are presented in
Gardner et al. [3], Afshan and Gardner [6] and Zhao et al. [41].

3.2. Deformation capacity

The local cross-section slenderness is defined in the CSM through
Eq. (6):

=λ
f
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y
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where fy is the material yield (0.2% proof) stress and σcr is the elastic
buckling stress of the full cross-section as used in the direct strength
method (DSM) [42], or conservatively, of the most slender constituent
plate element.

The deformation capacity εcsm/εy, according to the CSM, is defined
by the base curve, given by Eqs. (7) and (8) for non-slender (λp ≤ 0.68)
and slender (λp >0.68) cross-sections, respectively [6,41]:
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where εy = fy/E is the yield strain of the material, E is the Young's
modulus, εcsm is the CSM limiting strain for the cross-section, and εu is
the strain at the ultimate tensile stress, which can be approximated
from εu = C3(1 ˗ fy/fu); C1 and C3 are material parameters taken as C1

Table 1
Web shear buckling reduction factor χw.

χw for rigid end post χw for non-rigid end post

λw≤ 0.65/η η η

0.65/η< λw <0.65 0.65/λw 0.65/λw

λw≥ 0.65 1.56/(0.91+λw) 1.19/(0.54+λw)
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