
Contents lists available at ScienceDirect

Thin-Walled Structures

journal homepage: www.elsevier.com/locate/tws

Full length article

Analytical solutions for crack opening displacements of eccentric cracks in
thin-walled metallic plates

Wandong Wang⁎, Calvin Rans, Rinze Benedictus
Structural Integrity & Composites Group, Faculty of Aerospace Engineering, Delft University of Technology, P.O. Box 5058, 2600 GB Delft, The Netherlands

A R T I C L E I N F O

Keywords:
Eccentric crack
Crack opening displacement
Stress intensity factor
Load redistribution
Westergaard stress distribution

A B S T R A C T

In the context of the prevalence of thin-walled metallic aerospace structures, the added resistance to crack
propagation offered by a built-up structure is desirable from a damage tolerance standpoint. The analysis of
failure in such structures, however, is limited by the lack of crack opening solutions. This paper develops
analytical models that calculate crack opening displacements (CODs) for a more general cracking scenario, i.e.
non-symmetric cracks. The proposed models are based on the Westergaard stress functions. It is then found that
the COD solution of one model is particularly accurate. The potential significance of the obtained solutions lies in
analysing failure in built-up structures containing non-symmetric cracks. The crack opening solution is parti-
cularly useful in estimating the load transfer between cracked body and intact bridging structures in built-up
structures using the principle of displacement compatibility.

1. Introduction

Built-up structures with redundant load paths offer the ability to
exploit and tailor progressive failure modes within these structures.
This concept is often exploited in safety critical structures within the
aerospace industry where damage arresting features, such as fuselage
tear straps, and inherent redundant load paths in a given structure are
used to slow damage progression and enable its detection through
regular inspection the Damage Tolerance philosophy [1–5]. A major
key to implementing the damage tolerance philosophy is the ability to
predict damage growth behaviour. The period in which damage can
grow without leading to catastrophic failure defines the available in-
spection intervals to detect the damage. However, predicting damage
growth in redundant structures requires the ability to assess the impact
of the damage on the stiffness of structural elements in order to effec-
tively determine the load redistribution using solid mechanics and the
concept of displacement compatibility [6].

The classical method for analysing crack growth in many en-
gineering materials is using linear elastic fracture mechanics (LEFM). In
this approach, a linear elastic strain field is assumed in a continuum
containing a crack, and this assumption is used to determine a com-
patible displacement field for a given load applied to the cracked body.
Of primary interest for damage progression calculations is the magni-
tude of the singularity of the linear elastic stress field at the crack tip, or
stress intensity factor (K). Analytical solutions for the displacement
field and stress intensity factor exist for a wide variety of crack

configurations [7]. For crack configurations for which direct analytical
solutions are not available, geometrical correction factors to modify the
analytical solution for a crack in an infinite plate are often generated
through experimental and/or numerical methods. These correction
factors for stress intensity factor, known as β factors, are widely
available in the literature [7–12]. However, corrections for the dis-
placement field are often not available.

The accuracy of β factors developed by Isida is better than 1% [7].
The β factors were developed by expressing the Airy's stress functions in
terms of complex potential functions and solving these potential func-
tions [12]. The β factors are expressed as functions of the coefficients
which are tabulated in [12]. However, the accurate β factors cannot be
directly applied for an eccentrically cracked panel containing stiffening
elements. The interplay between the eccentrically cracked panel and
the redundant load paths must be taken into consideration in calcu-
lating the stress singularity in front of the crack tips.

The objective of this paper is to develop means of correcting the
Mode I crack opening displacement (COD) of non-symmetric cracks in
thin-walled metallic panels using linear elastic fracture mechanics. The
inherent assumptions of LEFM have to be respected when applying the
developed approach. The proposed approach is envisioned to be ap-
plicable to thick panels where the state of plane strain is valid.

The purpose of developing such correcting methods is to assist the
analysis of failure in eccentrically cracked panels with stiffening ele-
ments. This paper proposes 4 analytical models based on the
Westergaard stress function [13]. The Westergaard stress function is
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simplified to provide solutions for the crack opening displacement and
stress-strain field ahead of a non-symmetric crack. The stress intensity
factor solutions arising from the simplified Westergaard stress function
are compared to the results of Isida to show the validity of the proposed
models. A validated Finite Element Modelling (FEM) technique is ap-
plied to obtain the COD and strain field in front of non-symmetric
cracks, the simulation results are used to screen the 4 models in Section
4. In Section 5, the opening displacement solution will be employed in a
simplified case study to evaluate the impact of the load transfer me-
chanism on the stress intensity factors.

2. The westergaard function method

The Westergaard function method is a very convenient methodology
to characterize the entire stress and strain fields for a cracked body. The
Westergaard functions can also be simplified to their near-tip solutions,
i.e. stress intensity factor (SIF) solutions which provide the stress and
strain distributions at the crack tip vicinities [7,14]. In some instances,
however, it is desirable to know the entire stress-strain field ahead of
the crack tip. Load redistribution due to stiffness variation (either
geometric or material stiffness) can be resolved from such a stress-strain
field, such as the analysis of crack growth behaviour in a stiffened panel
conducted by Rans [6].

The closed-form Westergaard solutions are strictly applicable to
infinite plate crack problems except for Mode III crack problems [7];
nevertheless they can be modified to provide meaningful solutions for a
finite panel with a crack [15,16,6]. Barsoum et al. [15,16] predict the
stress intensity factor for cracks in finite width functionally graded
material containing layers with different stiffness using this method.
With the same assumption, Rans [6] predicts the crack growth in stif-
fened metallic panels.

Consider a central crack embedded in a finite panel under uniform
tensile loading, a Mode I crack problem, the stress ahead of the crack tip
along crack plane can be assumed to follow the Westergaard stress
distribution [7,11]:
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where σ is applied stress, β is a correction factor, a is the crack length

and x the distance from the crack centre in the crack plane.
The introduction of the correction factor β is to account for the

influence of the finite width boundary condition. The correction factor
β is a function of crack length and panel width. This variable can be
calculated using the load equilibrium between the crack section and far-
field. For a finite panel of width W, the load equilibrium can be ex-
pressed as:

∫=
−

σ W
σ β

a x
dx· 2

·
1 ( / )a

W /2

2 (2)

Solving the integral for a uniform stress state and rearranging for β:
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The corresponding crack opening displacement for plane stress state
can be given by:
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and stress intensity factor is expressed as following:

=K βσ πa (5)

The correction factor β is plotted in Fig. 1 against the ratio between
the crack length and specimen width. In order to show the validity of
the solution from the simplified Westergaard stress function, the ob-
tained correction factor for SIF is compared to that derived by Isida. see
Fig. 1. Good correlation can be observed.

It is worth noting that a finite panel with a central crack under Mode
I loading possesses a symmetric axis passing through the crack centre in
loading direction. The Westergaard stress distributions in front of two
crack tips, crack opening displacement configuration are symmetric
with respect to this symmetric axis (or crack centre). Especially it can
be seen in Eqs. (1), (4), (5) that these variables are functions of the
crack length a which is measured from the crack centre, also the lo-
cation of maximum crack opening, to the crack tip.

The presence of an eccentric crack in a finite panel under Mode I
loading eliminates the symmetric condition possessed by a centrally
cracked panel. As a result, the COD configuration and the stress dis-
tributions (stress-strain fields) ahead of the non-symmetric crack tips

Nomenclature

a Half Crack length mm( )
a1 Distance between maximum crack opening location and

crack tip 1 mm( )
a2 Distance between maximum crack opening location and

crack tip 2 mm( )
b Delamination mm( )
d Distance between crack centre and panel centre mm( )
d1 Distance between the location of P1 and panel centre mm( )
d2 Distance between the location of P2 and panel centre mm( )
e Eccentricity
E Young's modulus MPa( )
Ef Young's modulus of fibre layer MPa( )
K Stress intensity factor MPa mm( )
Kbr Stress intensity factor for crack tip 2 MPa mm( )
Ktotal Total stress intensity factor of the metal layer in Glare

panels MPa mm( )
L Distance from crack tip to the free edge ahead mm( )
P Integral of stress distribution in front of crack tip N( )
Papp Total applied load N( )
Sbr Bridging stress distribution MPa( )
Sf Stress in the fibre layer due to applied load MPa( )
Sm Stress in the metal layer due to applied load MPa( )

t Thickness mm( )
w Distance between crack datum and free edge mm( )
W Panel width mm( )
x Horizontal location in a xy-coordinate system mm( )
xc Centroid of the stress distribution in front of the crack tip

mm( )
y Vertical location in a xy-coordinate system mm( )
σ Applied tensile stress MPa( )
σyy Stress distribution in front of crack tip in loading direction

MPa( )
τxy shear stress MPa( )
λ Normalized crack length
β Correction factor for stress intensity factor
βIsida Correction factor for stress intensity factor derived by

Isida
v Crack opening displacement mm( )
vff Crack opening displacement due to far-field stress mm( )
vbr Crack opening displacement due to bridging stress mm( )
δf Fibre elongation mm( )

Subscripts

1 referring to crack tip 1
2 referring to crack tip 2
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