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A B S T R A C T

A shear deformation shell theory including thickness stretching effects is used to formulate the minimization
problem of the vibrational response of functionally graded truncated conical shells in different cases of boundary
conditions. Mechanical control energy is introduced into the formulation as a functional containing a closed-loop
control force. The optimization objective is taken as the sum of the control energy and the total energy of the
shell. Based on Lyapunov–Bellman theory, optimum values for the control forces and deflections are obtained for
shells with simply supported or clamped edges. A design procedure is applied to complete the minimization
process for the control objective using material and geometric parameters. Numerical and graphical results are
presented to show the importance of the inclusion of the thickness stretching effects into the formulation. An
assessment for the current design and control approach in minimizing the optimization objective is performed.

1. Introduction

Conical and cylindrical composite shells are extensively used in
many industrial and engineering structures such as aerospace, aero-
nautical, naval, and civil structures. For large space structures, it is
required light materials with very high flexibility and low natural
damping. One of the dominate problems facing the designers of such
structures is suppressing excessive vibrations [1,2]. Functionally graded
materials (FGMs) are a kind of composites in which the macroscopic
mechanical properties vary continuously and smoothly as the dimen-
sion varies [3–6]. These advanced composites possess numerous char-
acteristics such as reduction of stress concentration, high toughness,
improved thermal properties, etc. which make them appropriate for
tailoring a composite material to optimize a desired characteristic [7,8].

The active and passive control for suppressing the excessive vibra-
tions in large space structures is considered one of the effective means
for damping the vibrational response of these structures [9–11]. Several
mathematical models are available in the literature and dealing with
the design and control optimization for composite beams, plates and
shells [12–15]. Many multiobjective optimization approaches for these
components are presented with constraints imposed on relevant quan-
tities, see e.g. [16–19], but, relatively little studies have been devoted
to the optimization problems of truncated conical shells, particularly,
conical shells made of FGMs. Moreover, many studies have indicated
that neglecting shear and normal strains may lead to high errors in
predicting the optimal ranges for the design and control parameters

[20–24]. However, the studies dealing with the optimization problems
of composite shells and including these effects are few.

The present study is concerned with an optimal control problem of
minimizing the vibrational (dynamic) response of composite FG trun-
cated shells with the lowest expenditure for the control energy. The
problem is formulated based on a shell theory accounting for the effects
of shear deformation and normal strains, and a shear correction factor is
used. The total energy of the shell is considered as criteria for the shell
dynamic response. The cost objective of the control problem is assumed
to be a functional including the total elastic energy and control energy
due to a closed loop control force acting on the outer surface of the
shell. Based on Lyapunov–Bellman theory [25], optimum values for the
control force and deflections are obtained for shells with simply sup-
ported or clamped edges. A design procedure is used to lower the level
of the minimized energy of the shell using material and geometric
parameters as design variables. Numerical and graphical results are
presented to assess the inclusion of the thickness normal strain effect
into the shell optimization problems. The effectiveness of the present
control and design approach in minimizing the vibrational energy of
the conical shells is examined.

2. Governing and constitutive equations

A functionally graded truncated circular conical shell is composed
of two orthotropic materials such that the shell macroscopic mechanical
properties are orthotropic, and vary continuously across the shell
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thickness. The shell is of a uniform thickness h, a semivertex angle α, a
meridional length L along the generator of the cone, and R1 and R2 are
the radii of the cone at the small and large basses, respectively.
Introduce a curvilinear coordinate system xθz with origin on the shell
middle surface at the small base of the shell as shown in Fig. 1. The
coordinates x and z are in the directions of the generator and thickness
of the conical shell, respectively, and the coordinate θ is an angle in the
circumferential direction. Then, the radius R of the cone in the radial
direction at any point is:

= +R R x αsin( ).1 (1)

The present study accounts for a shell theory involving shear de-
formation and normal strain effects, and the displacement field may be
taken as:
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where u u u( , , )x θ z are displacements in the directions of the co-
ordinates x, θ and z, respectively, (u, v, w0) are displacements of a point
on the middle surface of the shell, and (w1,w2) are unknown functions
with no geometric meaning. The inclination angles ψ ϕ( , ) determine
slops of the normal to the shell middle surface in xz and θz surfaces due
to bending only. β is a parameter taking the values 0 or 1 for studying
the influence of the inclusion of normal strain into the shell control
problems.

The strains εij corresponding to the displacements (2) may be ob-
tained in the form:
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where comma (,) means a partial differentiation with respect to the
followed coordinate.

The constitutive relations for an orthotropic shell are

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

σ
σ
σ
τ

Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q Q

ε
ε
ε
γ

τ
τ

Q Q
Q Q

γ
γ, .

x
θ
z

xθ

x
θ
z

xθ

xz

θz

xz

θz

11 12 13 16

12 22 23 26

13 23 33 36

16 26 36 66

44 45

45 55

(4)

Here, (σx , σθ, σxθ) and (τz, τxz, τθz) are the in-surface and transverse shear
stresses, (εx , εθ, εz, γxθ, γxz, γθz) are the strain components, and Qij are the
stiffness coefficients which are functions of the thickness coordinate z.

Let the outer surface of the conical shell be subjected to a dis-
tributed load q x θ t( , , ) acting as a control force. Using the dynamic
version of the principle of virtual displacements, the governing equa-
tions of the shell may be obtained as follows:
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where the force and moment resultants Nxx, Nxθ, Nθθ,…, Fθθ are defined
as:
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where ε is a shear correction factor. In the present study, three types of
edges conditions are considered, when the two bases of the shell are
simply supported (SS), clamped (CC) and mixed of them (CS), and these
boundary conditions are:
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The governing equations of the cylindrical and annular shells may
be obtained, respectively, by setting =α 0 and =α π/2 in Eqs. (3)–(6).

3. The control and design objective

The control procedure is to minimize the vibrational (dynamic)
response of a FG conical shell due to initial disturbances given by:

= =w x θ A x θ w x θ B x θ( , , 0) ( , ), ̇ ( , , 0) ( , ), (8)

in an interval of time ≤ ≤ ≤ ∞t τ0 with the lowest expenditure for the
control energy due to a closed loop control load q x θ t( , , ) distributed
on the outer surface of the conical shell. The shell total energy may be
considered as a criteria for the vibrational response, therefore, the cost
function J for the control problem may be written as:
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where μ μ μ( , , )1 2 3 are positive weighting coefficients, J1 and J2 re-
present the deformation and kinetic energies of the conical shell, re-
spectively. The functional J3 represents a control energy including the
control function q, ∈q D2, D2 is the set of all solutions which must be
bounded, quadratic and integerable on the domain

≤ ≤ ≤ ≤ ≤ ≤ ≤ ∞x L θ π t τ{0 , 0 2 , 0 }. In addition, the cost function
J is quadratic and positive definite. Therefore, it is differentiable on the
domain D2. Then, the solution of the control problem may be reduced
to find the optimum control force q x θ t( , , ) from the initial boundary-
value problem (5)–(8) with the condition of minimizing the cost func-
tional (9). Furthermore, a design procedure is carried out to lower the
level of the minimized total energy of the shell using material and

Fig. 1. The geometry and coordinates of the truncated conical shell.
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