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Structural improvements for curved-surface thin-walled structures were examined. In such structures, installa-
tions of ribs—support structures for out-of-plane deformations—are often effective. These out-of-plane de-
formations are attributed to internal loadings induced from plane stresses. Shapes of solid curved I-sectional
beams models were optimized using a structural optimization algorithm—the traction method. Ribbed structures
were created semi-automatically by the structural optimization when adequate rib-triggers—striped shape

constraints or humps in the initial shapes—were applied to the models. This result validates the effectiveness of
rib installations on curved surface structures. It is notable that the rib formation created substantial topology

changes.

1. Introduction

Thin-walled structures often suffer deterioration of structural effi-
ciencies due to out-of-plane deformations, a phenomenon that is espe-
cially notable in curved surface structures. Thin-walled curved beams
are typical examples of such structures that may have wide ranging
applications. There is an extensive body of research examining issues
related to curved beams. The first contribution can be seen in the fa-
mous textbook by Timoshenko and in papers by the same author [1,2].
Anderson [3] examined practical issues of curved beams both in theory
and through experiments, demonstrating various examples of curved
beam structures in road vehicles and railway cargoes. Issues related to
curved beams have continuously attracted the attention of researchers.
Recently, extensive studies in nonlinear regions [5,4], applications of
composite materials [6,8,7] and new analysis methodologies [10,9]
have been published.

Curved beams lose bending stiffness due to sectional distortions and
consequential stress localizations. For example, in I-sectional curved
beams, longitudinal bending stresses decrease at the edge of the flanges.
As a result, these edge parts carry less load and the bending stiffness is
equivalent to that of a narrower beam. Fig. 1 shows a typical example of
an [-sectional curved beam. The sectional distortions and the non-uni-
form stress distributions at the flanges can be seen. Westrup and Silver
[11] proposed a concept called the “effective area” to describe these
phenomena and derived exact or approximate solutions for several
types of curved beams. Schagerl [12] extended this concept to universal
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curved thin-walled structures. Akita et al. [13] studied curved beams in
vessel structures and examined the effects of rib installations that
suppress the sectional distortions. Rothwell [14] pointed out the ex-
istence of an internal force causing the sectional distortions called
“effective lateral pressure” and proposed approximation methods to
solve curved beam problems. The formula for this pressure F is as fol-
lows:

t
F=%° §
where, o is the in-plane stress at the mid-plane of the flange, t is the
thickness of the flange, and R is the curvature radius of the beam. It
should be noted that the work of Westrup and Silver [11] is also based
on a similar internal force called “induced radial loadings”. These in-
ternal forces may be generalized as follows [15-18]:

F = tQy. o 2

where, the given coordinate system is a local coordinate system parallel
to the local plane, and Qj is an inverse of the curvature radius measured
along the i and the j directions. Below, this paper calls this internal force
the “induced force”.

As Schagerl [12] pointed out, sectional distortions occur due to the
induced forces in both curved beams and universal curved thin-walled
structures. At a glance, these distortions do not seem to significantly
affect structural integrity. However, these parasitic deformations cause
additional in-plane strain that change the stress distributions and
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Fig. 1. Curved beam modelled using 2D-shell (the colour contours denote Von-Mises
stresses at mid-plane, the loading is constant moment bending, sectional distortions occur
at the flanges, and the stress distributions at the flanges are no longer uniform
(H =W =100, R = 500, t = 4).) The x — y plane is set at the section of the beam. (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

prevent efficient load transfer. It is not easy to identify such weakened
parts in actual structures. Li et al. [19] proposed an analysis method to
identify these structural weak-points called “micro-lambda A” and de-
monstrated an application for an automotive structure. This method
described the relationship between the plate stress ¢ and the plate
thickness t as o o t™*, and regression computations determined the
factor 1 according to FEA using varying plate thicknesses. According to
Li et al., installations of ribs at high 1 areas successfully improved the
structural efficiency. At those high A areas, bending of the shell may
exist. Some of this bending may be caused by the induced force. An
extensive application of this work can be seen in the literature [20].

As pointed out by Anderson [3] and evaluated by Akita et al. [13],
installations of ribs are an effective way to recover structural efficiency.
Several recently proposed algorithms for structural optimization yield
optimum structures based on FEA models [21-26]. These algorithms
may be capable of creating appropriate ribs on curved thin-walled
structures. However, the automated installation of such ribs has not
been implemented.

This study aims to validate this concept—that of induced force and
improvement using rib installations— and to implement a trial of au-
tomated ribbed structure formation using structural optimization soft-
ware. There are two categories of structural optimization: topology
optimization (i.e., the formation of structures), and shape optimization
(i.e., the modification of given structures). This study attempted to
apply shape optimization to I-sectional curved beams. This shape op-
timization is applicable to both shell and solid models. In shell models,
formations of new ribs are regarded as changes in topology, which is
unattainable using current shape optimization algorithms. Therefore,
this study applied the optimization to solid models. As expected, the
shape optimization created rib-like structures and the bending stiffness
recovered to the level of straight beams. It was also found that adequate
triggers are needed. The details are described below.

2. Theory of curved beams

This study only examines the linear region— every displacement is
regarded as infinitesimal—, and changes in the moment inertia due to
the distortion are not taken into account.

The nominal moment of inertia I, can be described as follows:

tyWH? + tpH?
2 12

Tpeamo = IﬂgO + Lyeb = 3)
where, Iy, is the contribution of the flanges and I, is the contribution
of the web. The thicknesses of the plates are regarded as sufficiently
smaller than the web height H or the flange width W.

As the result of sectional distortion, the longitudinal stresses at the
flanges are no longer constant value of (gy) but have a distribution oy, (x)
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as a function of the transverse (along with W) coordinate x. The stress
distribution can be described as follows [11,14]:
h(x)

=gy — —E
a.,(x) = g R )
where, the function h(x) is the displacement of the flange relative to the
web —the parasitic sectional distortion—, and E is the Young's modulus
of the flanges.

The induced force can be described following Eq. (1):

t
F(x) = —
(€3] R ) )
The transverse bending of the flanges h(x) can be described as a
thin-plate cantilever.

InE d2h

w
j; 2 PG — x)dx = o ot

(6)
where, v is Poisson's ratio and I, is the moment of inertia with respect
to width for the transverse bending of the flange.

3
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These equations can be converted to non-dimensional forms as
follows:

Eh(x)
fx)=——= Ry ®)
=*
=w ©
Finally the governing equation is obtained:
1 e . 1 R \? d*f
2A-fX X—XdX=7(—)—
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The parameter tR/W? governs the system. Note that Westrup and Silver
[11] derived exact solutions for this equation.

The reaction force of the beam is lowered due to the reduced stress
oL (x). This means that the effective moment of inertia I, decreases
from the nominal value Ipg. It can be evaluated as follows:

j(;W/z 0, () dx
/O-W/ZO_O dx

Fig. 2 shows the result of Eq. (11). The reduction in the effective
moment of inertia is remarkable when tR/W? is less than unity. If the
transverse bending stiffness of the flanges—I,,—can be sufficiently
increased, then the beam bending stiffness may recover. An installation
of ribs on the flange as shown in Fig. 3 may be effective because these
ribs notably increase the transverse bending stiffness of the flanges even
if the ribs are very thin.
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Fig. 2. Effective moment of inertia (v = 0.288).
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