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A B S T R A C T

Exact solutions for free vibration of functionally graded (FG) orthotropic circular cylindrical shells embedded in
an elastic medium with arbitrary classical boundary conditions are obtained by a Hamiltonian-based method.
Based on the Reissner shell theory and symplectic mathematics, all six possible general solutions instead of trial
functions in classical inverse or semi-inverse methods are determined analytically. The determination of natural
frequency and vibration mode shape is reduced to an eigen-problem of the Hamiltonian matrix in symplectic
space. Numerical examples are provided to verify the validity of the present method. Some new results are also
given.

1. Introduction

Shells and shell-like structures have long been key structural com-
ponents due to their efficient load-carrying capabilities. Recently, with
the development of material science, functionally graded materials
(FGMs) fabricated by mixing two or more phases of materials for special
design requirements [1] have drawn attention of many researchers due
to their great promise in applications where the operating conditions
are severe [2,3]. The FG circular cylindrical shells are increasingly
being used in a variety of engineering applications, such as storage
tanks, pressure vessels, submarine pipelines, nuclear pumps and aircraft
fuselages [4–11]. Therefore, the study of dynamic behaviors of such
shells is of serious consequence for their strength and safety designs
considering the wider range of application of FG circular cylindrical
shells.

The study on the vibration behaviors of cylindrical shells is a well-
established field of research in structural dynamics [12–17]. However,
the researches devoted to free vibration of FG circular cylindrical shells
are very limited. Vel [18], Cao and Tang [19], Davar et al. [20], Iqbal
et al. [21] obtained exact solutions for free vibration of FG cylindrical
shells by using some auxiliary and potential functions such as trigo-
nometric functions. Due to the enormous efforts required in obtaining
the closed-form solutions, many researchers have resorted to numerical
solutions instead of exact solutions. In the framework of numerical
methods, the finite element method (FEM) [22–24], meshless method
[25,26], Rayleigh-Ritz method [27–29], Galerkin method [30,31] and
generalized differential quadrature method (DQM) [32–34] are

employed to determine the natural frequency of a FG circular cylind-
rical shell. Although the numerical data is convenient to aid the design
of such structures, it is usually time consuming and enormously costly.
Therefore, there are still great demands for analytical methods and
exact solutions which can be served as benchmark solutions and benefit
the rapid design. Unfortunately, all existing exact solutions were ac-
complished by inverse or semi-inverse methods involving some pre-
determined general solutions (trial functions). No more progress was
reported on the topic of closed-form solutions of the FG circular cy-
lindrical shell in recent years.

Motivated by this, the major aim of this paper is to introduce an
analytical symplectic method to study the free vibration of a FG or-
thotropic circular cylindrical shell embedded in an elastic foundation.
Unlike the classical analytical method in Lagrangian system, the
Hamiltonian-based method [35–38] is systematic and straightforward,
and has been successfully extended to the vibration of plates [39–43].
In the Hamiltonian system, the high-order governing differential
equation is reduced to a set of ordinary differential equations which can
be analytically solved by the method of separation of variables. Six
general solutions are analytically determined after obtaining the zero
and non-zero symplectic eigenfunctions. Highly accurate natural fre-
quencies and exact vibration mode shape functions for arbitrary com-
binations of classical boundary conditions are obtained simultaneously.
The entire procedure is clear and rational without any pre-determined
functions.

The paper is organized in a sequential manner according to theory.
The basic equations of a FG circular cylindrical shell are presented in
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Section 2 while the Hamiltonian system is established in Section 3. The
symplectic eigenvalues, eigenfunctions and exact frequency equations
are derived in Section 4. Numerical examples are provided in Section 5.
Comparison with existing results whenever possible and benchmark
solutions are also included. Finally, Section 6 summarizes with some
concluding remarks.

2. Basic equations

Consider a FG orthotropic circular cylindrical shell embedded in an
elastic medium having a constant thickness h, an axial length L and a
middle radius R as shown in Fig. 1. An orthogonal coordinate system (x,
θ, z) is selected at the middle surface of the cylindrical shell where x, θ
and z represent the axial, circumferential and radial coordinates, re-
spectively. The displacements in x-, θ - and z- directions are denoted by
u, v and w, respectively. The Winkler elastic foundation model is used to
describe the reaction of the surrounding elastic medium.

For a FG orthotropic cylindrical shell, the material properties are
assumed to vary continuously along the shell thickness [27] and can be
represented in the following form of
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where P(z) are the effective material properties including Young's
modulus E, Poisson ratio υ and mass density ρ; the subscripts “x” and
“θ” denote x- and θ – axes, respectively; the subscripts “o” and “i” de-
note the outer and inner surfaces of the cylindrical shell, respectively; N
stands for the power-law exponent. In addition, the mass density is
assumed as = =ρ ρ ρx θ.

In the thin shell theory, the constitutive relation is given by
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where σij and eij (i, j = x, θ) are the stress components and strain
components, respectively; the reduced stiffness Qkl (k, l = 1, 2 and 6)
are = −Q E υ υ/(1 )x x θ11 , = −Q E υ υ/(1 )θ x θ22 , = −Q υ E υ υ/(1 )θ x x θ12 ,

= −Q υ E υ υ/(1 )x θ x θ21 and = +Q E υ/[2(1 )]θ x66 ; =υ E υ Ex θ θ x.

The strain components for a Reissner shell [16] can be further ex-
pressed as
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The force and moment resultants of the cylindrical shell are given
by
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Substituting Eqs. (2) and (3) into Eq. (4), the internal forces can be
expressed in terms of mid-surface displacements, i.e.,
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where ∫= −A B D Q z z dz{ , , } {1, , }ij ij ij h
h

ij/2
/2 2 (i, j = 1, 2 and 6) are the

extensional, coupling and bending stiffnesses which satisfy =A A12 21,
=B B12 21 and =D D12 21.
For free harmonic vibration, it is assumed that

Nomenclature

E , υ, ρ Young's modulus, Poisson's ratio and mass density
L, h, R Axial length, thickness and middle radius
N Power-law exponent
ω Circular frequency
H Hamiltonian operator matrix
ψ Total unknown vector

q, p Original vector and dual vector
μ, η Symplectic eigenvalue and Symplectic eigenfunction
θθ Angle of rotation
Aij, Bij, Dij Extensional, coupling and bending stiffnesses
Kw Foundation stiffness
LC Lagrangian density function
Qkl Reduced stiffness
Vx , Vθ Equivalent shear forces

Fig. 1. Geometry of a FG orthotropic circular cylindrical shell
embedded in an elastic medium.
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