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a b s t r a c t

Natural frequencies of a toroidal shells of revolution with hollow elliptical cross-section are determined
by the Ritz method from a three-dimensional (3-D) theory while traditional shell theories are mathe-
matically two-dimensional (2-D). The Legendre polynomials, which are mathematically orthonomal, are
used instead of ordinary algebraic polynomials as admissible functions. The present analysis is based
upon the circular cylindrical coordinates while the toroidal coordinates have been used in general. Po-
tential and kinetic energies of the torus are formulated, and upper bound values of the frequencies are
obtained by minimizing the frequencies. Convergence to four-digit exactitude is demonstrated for the
first five frequencies of the torus. Comparisons are made between the frequencies from the present 3-D
method, a 2-D thin shell theory, and thin and thick ring theories. The present method is applicable to
very thick toroidal shells as well as thin ones.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Toroidal shells are elements of many practical science and en-
gineering structures. They are often proposed for rotating spacecraft,
neutron accelerators, space colonies, cooling tubes, etc. Unlike
straight circular cylindrical shells, the circumferential modes in
elastic circular toroidal shells cannot be described by using simple
functions. If the circumferential modal (sine or cosine) functions of a
straight circular cylindrical shell are employed to describe the cir-
cumferential mode shapes of a toroidal shell, they will be strongly
coupled making the analysis much more complicated [1]. A vast
published literature exists for free vibrations of shells. The mono-
graph of Leissa [2] summarized approximately 1000 relevant pub-
lications world-wide through the 1960's. Almost all of these dealt
with shells of revolution (e.g., circular cylindrical, conical, spherical).
Among them were 14 references considering toroidal shells (see p.
411 in [2]). Some additional investigations of the static and dynamic
characteristics of toroidal shells have also been uncovered [1,3–24].
Almost all the research on the toroidal shells has been related to
toroidal shells with circular cross-section. Yamada et al. [8] in-
vestigated toroidal shells of revolution with hollow elliptical cross-
section for the first time. However, their study [8] was based upon
conventional thin shell theory. The above mentioned analyses were
all based upon experimental methods [3,4] or shell theories which
are mathematically two-dimensional (2-D) except for the references

[17,18]. That is, for thin shells one assumes the Kirchhoff hypothesis
that normals to the shell middle surface remain normal to it during
deformations (vibratory, in this case), and unstretched in length. This
yields an eighth order set of partial differential equations of motion.
For the toroidal shells they involve variable coefficients, making them
quite difficult to solve. Even so, conventional shell theory is only
applicable to thin shells. Even though a higher order shell theory [19]
could be derived which considers the effects of shear deformation
and rotary inertia, and would be useful for the low frequency modes
of moderately thick shells, such a theory would also be 2-D. But for
toroidal shells the resulting equations would be very complicated.

Three-dimensional (3-D) analysis of structural elements has
long been a goal of engineers. If one can use 3-D analysis, then the
kinematic approximations which are required in 1-D or 2-D re-
presentations need not be made (e.g., assuming that plane cross-
sections remain plane during deformation of a straight or curved
beam, or a ring). With the current availability of computers of
increased speed and capacity, it is now possible to perform 3-D
structural analyses of bodies in some cases to obtain accurate va-
lues of static displacements, free vibration frequencies and mode
shapes, and buckling loads and mode shapes. Especially, bodies of
revolution permit more efficient 3-D analysis because all mode
shapes are Fourier components of the circumferential angle (θ).
This allows one to analyze each of the Fourier components sepa-
rately, and each component entails a problem that has two in-
dependent variables in space, instead of three. The first contribu-
tion to 3-D vibration analysis of toroidal shells of revolution with
hollow circular cross-section was made by Buchanan and Liu [18].
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They used a nine-node Lagrangian finite element method based
upon the toroidal coordinate system while the present analysis is
based upon the circular cylindrical coordinate system. And Zhou
et al. [17] analyzed vibrations of torus with solid circular cross-
section using the 3-D method for the first time.

In the present study, a 3-D analysis on the vibrations of com-
pletely free, toroidal shells of revolution with hollow elliptical
cross-section is investigated by the Ritz method. Instead of at-
tempting to solve the equations of motion, an energy approach is
followed which, as sufficient freedom is given to the three dis-
placement components, yields frequency values as close to the
exact ones as desired. The Legendre polynomials, which are
mathematically orthonomal, are used instead of ordinary algebraic
polynomials as admissible functions. To evaluate the energy in-
tegrations over the toroidal shell volume, displacements and
strains are expressed in terms of the circular cylindrical co-
ordinates, instead of related 3-D shell coordinates which are nor-
mal and tangent to the shell midsurface, mainly because it takes

much more time to compute the energy integration based upon
the 3-D shell coordinates than based upon the circular cylindrical
coordinates. Comparisons are made between the frequencies from
the present 3-D method, a 2-D thin shell theory, and thick and thin
ring theories. The present method is applicable to very thick shells
as well as thin shells.

2. Method of analysis

A representative cross-section of a toroidal shell of revolution
with hollow elliptical cross-section and its planform are shown in
Fig. 1. The distance between the axis of revolution (z-axis) and the
center of the cross-section is denoted by R. The thickness of the
cross-section is H. The lengths of major and minor axes of the
midsurface of the elliptical cross-section are 2a and 2b, respec-
tively. The mid-surface of the cross-section has the equation
( − )r R a/2 2 + =z b/ 12 2 for >r 0. The circular cylindrical coordinate

Nomenclature

a length of semi-major axis of the middle surface of a
hollow elliptical cross-section

as length of semi-major axis of a solid elliptical cross-
section

A cross-sectional area
A B C, ,ij kl mn arbitrary coefficients
b length of semi-minor axis of the middle surface of a

hollow elliptical cross-section
bs length of semi-minor axis of a solid elliptical cross-

section
DA Hillbert space
DET size of determinant
E Young's modulus
H thickness of a hollow elliptical cross-section

*H ≡H a/
i j k l m n, , , , , indices for double summation (non-negative

integer)
I the second moments of cross-sectional area
I I,V T defined by Eqs. (16) and (17), respectively
I,J,K,L,M,N highest degrees of the Legendre polynomial terms
J polar moment of cross-sectional area
k ≡b a/
ks shear coefficient used in Timoshenko's beam theory.
K stiffness matrix

αβαβ αβαβ^ ^ ^ ^K , M submatrix of K and M
α β α( = = ^=i k m j l n, , ; , , : β^ ^ ^ ^ = ^ ^ ^)i k m j l n, , ; , ,

M mass matrix
n circumferential wave number (n¼0,1,2,…)
Pn Legendre polynomial (n¼0,1,2,…)

αβP ψ ζ α β≡ ( ) ( ) ( = = )α βP P i k m j l n, , , , ,
r radial coordinate
r0 radius circle of with the same meridional length of an

elliptical cross-section
r,z,θ circular cylindrical coordinate system
R distance between the z-axis and the center of a hollow

elliptical cross-section
*R ≡R a/ or R a/ s

s mode number
t time
T kinetic energy
Tmax maximum kinetic energy

TR total number of the Legendre polynomial terms used
in r or Ψ direction

TZ total number of the Legendre polynomial terms used
in z or ζ direction

θu u u, ,r z displacements in the directions of r, z, θ, respectively
θU U U, ,r z displacement functions of Ψ and ζ

V strain energy
Vmax maximum strain energy
x vector of unknown coefficients
z axial coordinate
zi o, coordinates of the inner and outer surfaces of a hollow

elliptical cross-section for ≥r 0 and ≥z 0, respectively
α arbitrary phase angle
Γ Γ,1 2 constants, defined by Eqs. (19).
δij Kronecker delta
ε ε ε ε≡ + + θθrr zz

εij tensorial strain
ζ non-dimensional axial coordinate (≡z b/ or z b/ s)
ζi o, ≡z b/i o,
η θr z, , functions of ψ and ζ depending upon the geometric

boundary conditions
θ circumferential coordinate
κi functions defined by Eqs. (18) (i¼1,2,…,6)
λ G, Lamé parameters
Λ domain of a toroidal shell of revolution with a hollow

elliptical cross-section
μ non-dimensional constant of Winkler-Bach curved

beam theory
ν Poisson's ratio
π 3.1415926535…
ρ mass density per unit volume
σij tensorial stress
ψ non-dimensional radial coordinate (≡r a/ or r a/ s)
ψ ζ θ, , non-dimensional circular cylindrical coordinates
ω natural frequency
Ω square of non-dimensional frequency ω ρ( ≡ )a G/2 2

0A circumferential wave number for axisymmetric modes
0T circumferential wave number for torsional modes
2DS 2-D shell theory
• time derivative
, spatial derivative
[n] the largest integer rn
f g, ∬ ψ ζ ψ ζ ψ ζ ψ≡ ( ) ( )

Λ
f g d d, ,
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