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a b s t r a c t

There are considered thin periodic plates with moderately large deflections. To take into account the
effect of the microstructure on behaviour of these plates the tolerance modelling method is applied, cf.
Domagalski and Jędrysiak [2], Meccanica, 2012. This method makes it possible to derive model equations
with constant coefficients involving terms dependent of the microstructure size. The paper contains an
computational example of critical load calculations and postbuckling analysis.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Thin linear-elastic plates with a periodic structure in planes
parallel to the plate midplane, cf. Fig. 1, are considered. Plates of this
kind may undergo deflections of the order of their thickness.
Equilibrium problems of such plates are described by nonlinear
partial differential equations with non-continuous highly oscillating
periodic coefficients. These equations are not suitable in investigating
special problems. Therefore, various simplified approaches, introdu-
cing effective plate properties, are proposed. Amongst them can be
mentioned those based on the asymptotic homogenisation, cf. Kohn
and Vogelius [11]. However, the effect of the microstructure size on
the plate behaviour in governing equations of these models is usually
neglected. Elastostatic problems of thin plates under large deflections
are described by the known geometrically nonlinear equations,
which are presented in e.g. Timoshenko and Woinowsky-Krieger
[17], Woźniak [20]. Using equations of the three-dimensional non-
linear continuum mechanics there are derived equations of von
Kármán-type plate theories, Meenen and Altenbach [13]. To investi-
gate bending problems of these plates various methods can be used,
for instance the known methods proposed by Levy [12], Timoshenko
and Woinowsky-Krieger [17]. Moreover, applications of other new or
modified methods are shown in many papers, e.g. a certain asymp-
totic approach for rectangular plates with variable thickness by
Huang Jia-yin [4], a dynamic critical load for buckling of columns

by Teter [16], a problem of stability of plates perforated in triangular
patterns by Degtyarev and Degtyareva [1], a global and local buckling
of sandwich beams and plates by Jasion et al. [5], an analytical study
of elastic thin-walled I-section struts buckling using nonlinear
variational approach by Wadee and Bai [19].

Some new averaged, non-asymptotic models of thin periodic
plates based on the nonlinear theory have been proposed in
papers by Domagalski and Jędrysiak [2]. These, so called, tolerance
models have been obtained by application of the tolerance aver-
aging technique, cf. the books Woźniak and Wierzbicki [23],
Woźniak et al. [21,22]. The obtained equations, in contrary to the
exact ones, have constant coefficients, some of which explicitly
depend on the characteristic size of a periodicity cell.

The aforementioned technique is very general and is suitable for
modelling of problems described by differential equations with
highly oscillating coefficients. Since, it is used in analysis of thermo-
mechanical problems of solids and structures with internal micro-
structure. Applications of this method to various periodic structures
are shown in a series of papers, e.g.: for vibrations of periodic wavy-
type plates by Michalak [14]; for periodically stiffened plates by
Nagórko andWoźniak [15]; for the buckling of periodic thin plates by
Jędrysiak [6], where a comparison between critical forces calculated
by the tolerance model and by the orthotropic plates theory is
shown; for stability analysis of periodic shells by Tomczyk [18]; for
dynamic stability of periodic plates by Jędrysiak [7]; for vibrations of
periodic thin plates by Jędrysiak [8], where values of fundamental
resonance frequencies are compared – for the tolerance and asymp-
totic models, for the orthotropic plates theory and for the finite
element method; for vibrations of thin functionally graded plates
with the plate thickness small in comparing to the inhomogeneity
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period by Kaźmierczak and Jędrysiak [10]; and for vibrations of thin
functionally graded plates with the inhomogeneity period of an order
of the plate thickness by Jędrysiak [9]. The extended list of papers can
be found in the books [21,22]. A comparison of preliminary results
obtained in the framework of the proposed nonlinear model with
finite element solutions was made by Domagalski and Gajdzicki [3].

In this paper the nonlinear tolerance and asymptotic models of
elastostatic problems for thin periodic plates with moderately
large deflections are presented and discussed. An example of
application of these models in analysis of buckling problems of
rectangular plates is also shown, with calculation of critical loads.

2. Fundamental equations

Let Ox1x2� 3 be an orthogonal Cartesian coordinate system;
subscripts i, j, k, l run over 1, 2, 3 and α, β, γ, ω run over 1, 2. Denote
x¼(x1, x2) and z¼x3. The undeformed plate with midplane Π and
thickness δ(x) occupies the region Ω� {(x,z): �δ(x)/2rzrδ(x)/2,
xAΠ}.

It is assumed that periodic plates under consideration consist of
many small repetitive elements called periodicity cells. The cell is
defined as a plane region&� [� l1/2, l1/2]� [� l2/2, l2/2], where l1,
l2 are the cell dimensions along the x1-, x2-axis. The size of the
microstructure of the plate is described by the diameter of the
periodicity cell, given by l¼[(l1)2þ(l2)2]1/2 and satisfying the
condition max(δ)«l«min(L1, L2), (L1 and L2 are characteristic dimen-
sions of the plate along the x1- and x2-axis). This diameter is called
the microstructure parameter. Hence, the cell can be treated as a
thin plate. Let us denote the partial derivatives with respect to a
space coordinate by ∂α¼∂/∂xα.

Our considerations are based on the nonlinear theory of thin
plates [17,20]. Let w(x) be a plate midplane deflection, u0α(x) be
the in-plane displacements along the xα-axes, F(x) be the stress
function, and q(x) be the total loadings in the z-axis; xAΠ.
Thickness δ(x) can be a periodic function in x and elastic moduli
aijkl¼aijkl(x,z) can be also periodic functions in x and even func-
tions in z. Let aαβγδ, aαβ33, a3333 be the non-zero components of the
elastic moduli tensor. Denote cαβγδ� aαβγδ-aαβ33aγδ33(a3333)-1.

Define the mean plate properties, being periodic functions in x,
i.e. membrane stiffness bαβγδ, bending stiffness dαβγδ, and mem-
brane susceptibility tensor ~bαβξη components in the form:

bαβγωðxÞ ¼
Z δðxÞ=2

� δðxÞ=2
cαβγωðx; zÞdz; dαβγωðxÞ ¼

Z δðxÞ=2

� δðxÞ=2
cαβγωðx; zÞz2 dz

~bαβξηbξηγω ¼ δαγδβω: ð1Þ

In the Föppl-von Kármán formulation of nonlinear theory,
substitution of the corresponding derivatives of Airy function
F(x) in place of the membrane forces nαβ is used:

nαβðxÞ ¼ℜαβFðxÞ; ð2Þ
where the differential operator ℜ is of the form:

ℜαβðU Þ � ðδαβδξη�δαηδβξÞ∂ξηðUÞ � ð∇2δαβ�∂βαÞðU Þ; ð3Þ

cf. Woźniak [20]. Note that ℜ has the following property:

∂βℜαβðU Þ ¼ℜαβ∂βðU Þ ¼ 0: ð4Þ

In the framework of nonlinear two-dimensional thin plate
theory the basic relations, involving strain–displacements and
membrane strain–membrane forces relations, can be written:

καβ ¼ �∂αβw;

E0αβ ¼ 1
2 ð∂βu0αþ∂αu0βþ∂αw∂βwÞ;

E0αβ ¼ ~bαβγωℜγωF: ð5Þ

Now, following the modelling procedure presented in the book
[21], the action functional can be introduced in the form:

Aðw; F;u0αÞ ¼
Z
Π
ℒðx;w; F;u0α; ∂αw; ∂αβw; ∂αβF; ∂βu0αÞdx; ð6Þ

w�w(x), F� F(x), u0α� u0α(x), with the lagrangian given as:

ℒðx;w; F;u0α; ∂αw; ∂αβw; ∂αβF; ∂βu0αÞ

¼ 1
2
ð∂βu0αþ∂αu0βþ∂αw∂βwÞℜαβF�1

2ℜαβF ~bαβγωℜγωF

þ1
2 ∂αβwdαβγω∂γωw�qw; ð7Þ

where the first two terms correspond to the strain energy due to
stretching the middle surface of the plate, the third is related with
bending, and the third is the work of external load, all of them
averaged over the plate thickness.

One can now formulate the equations of the principle of
stationary action,

δAðw; F;u0αÞ ¼ 0; ð8Þ
which, under essential boundary conditions, yieldZ
Π

ℜαβ
∂ℒ

∂ðℜαβFÞ

� �
δFþ ∂ℒ

∂w
�∂β

∂ℒ
∂ð∂βwÞþ∂αβ

∂ℒ
∂ð∂αβwÞ

� �
δw

� �
dx¼ 0;

ð9Þ
cf. (4). This equation, together with (7) leads to the following form
of the governing equations of nonlinear theory of inhomogeneous
anisotropic plates:

ℜαβð ~bαβγωℜγωF�1
2∂αw∂βwÞ ¼ 0;

∂αβðdαβγω∂γωwÞ�ℜαβF∂αβw�q¼ 0; ð10Þ

which will be the starting point of further considerations. In these
equations there have been denoted

~bαβγω ¼ 1
Eδ½1þ ν

2 ðδαγδβωþδαωδβγÞ�νδαβδγω�;

dαβγω ¼ Eδ3

12ð1�ν2Þ νδαβδγωþ
ð1�νÞ

2
ðδαγδβωþδαωδβγÞ

� �
; ð11Þ

E¼E(x), ν¼ν(x) stand for the Young's modulus and Poisson's ratio. It
can be seen that coefficients of Eq. (10) are discontinuous and highly
oscillating. This makes solutions to these equations very difficult to
obtain. The main aim of this paper is to propose a replacement of
original equations with an approximate model preserving the
information about the microstructure of considered plates.

3. Tolerance modelling

3.1. Introductory concepts

Following [21] some of introductory concepts of the tolerance
modelling are reminded below.

A cell at xAΠ& is denoted by &(x)¼xþ&, Π&¼{xAΠ: &(x)
CΠ}. The fundamental concept of the modelling technique is the

Fig. 1. A fragment of a thin periodic plate.
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