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The finite element simulation of structures subjected to post-buckling still faces computational limits,
especially for large stiffened structures. Several solving strategies have already been proposed in
response to this issue. Among them are the adaptive model reduction solving techniques which demon-
strated their ability to drastically reduce the number of unknowns as well as to control the approxima-
tion error of solving non-linear problems like post-buckling. The challenges regarding these techniques
are the computation of a reduced basis at lower cost, the use of an efficient adaptive procedure and
the limitation of the number of call to the adaptive procedure. This paper proposes a Post-Buckling
Adaptive Model Reduction (PBAMR) strategy, which requires only two initial Ritz vectors without
compromising the accuracy of the simulation. This solving method is tested in the case of shear of a

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The stiffened structures used in a variety of applications
(especially aeronautics) are likely to buckle locally without com-
promising their integrity. By allowing this local buckling of
structures while preventing permanent deformations, their weight
can be further reduced. For this reason, interest in post-buckling
has grown recently, leading to the study of induced phenomena, e.
g. composite skin/stiffener debonding [1-3]. In these studies or
during preliminary and advanced design phases, the post-buckling
simulation of structures is needed not only once but several times
within optimization procedures [4,5].

Analytical and semi-analytical approaches have demonstrated
their relevance in the preliminary design phases through their low
computational costs and the establishment of closed-form solu-
tions, which are suited to parametric analysis and optimization
[6,7]. However, complex geometries and loadings, material proper-
ties and multi-scale phenomena restrict their use in advanced
design phases. Although an advanced description of a stiffened
panel has been developed by considering elastic restraints due to
the stiffeners [7], the buckling interactions between neighbouring
panels are not accounted for in these approaches for the moment.
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In contrast, the versatility of the finite element method enables it
to tackle a wide range of issues. However, the computational cost is
much higher and may prevent the simulation of the post-buckling of
large scale structures [2,8]. This is the reason why many works have
sought to develop efficient solving strategies. Among these are the
multi-scale approaches [8-10] and the model reduction techniques
[11-15]. In this paper, a projection-based model reduction strategy
(i.e. based on the projection of the unknown vector on a Ritz basis) for
post-buckling analysis is proposed. Attention is paid to the accuracy of
the resulting approximation and to the cost of setting up the post-
buckling Ritz basis.

According to aeronautical requirements regarding post-buck-
ling of structures, it is assumed that the targeted applications
remain in the framework of the early stage of post-buckling and
verify the assumption of small strains and moderated rotations. So
the authors focus on a way to use mechanical knowledge of the
early stage post-buckling in order to build an efficient Ritz basis,
i.e. a small Ritz basis able to represent accurately the solution of
the considered problem. In a first section, the state of the art of
this knowledge is reviewed in the light of the (semi-)analytical
methods. After having recalled the principles of projection-based
model reduction and methods to control the approximation
error, an adaptive model reduction strategy is proposed. The
second section presents the validation of the assumptions and
the evaluation of the computational performance of the strategy.
The behaviour of the strategy is described in the case of a simple
plate. An application to a stiffened panel is then proposed, which is
more representative of industrial needs.
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2. Literature review

2.1. Understanding of the post-buckling behaviour of structures:
closed-form solutions

In a first stage of post-buckling, the non-linearity is purely due
to geometric effects. This kind of non-linearity is accounted for in
mechanical modelling by the assumption of large displacements,
small strains and moderate rotations. The non-linear system of
equations that governs the static equilibrium of domain @ is
commonly built from the variational formulation of the potential
energy Iy (1) (where I,y is the energy of the external forces):
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Green-Lagrange strains ¢ (2) and conjugated stresses o by the
Hooke tensor C (3) are used in the framework of large displace-

ments, small strains and moderate rotations:
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In the case of plates, the in-plane stresses can also be approxi-
mated by the Airy stress functions y(x,y) (4), as observed in the
literature [7,16]:
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J.p&(x,y) being the derivative of g according to « and g, which
represent either x or y. Approximate expressions of displacement
field and/or stress state, that are solutions of equation (1), were
sought for simplified configurations by means of analytical Ritz
formulations. Besides providing an understanding of the post-
buckling, these analytical approximations are based on assump-
tions that could guide the development of finite element model
reduction. Therefore, an insight is given into how a closed-form
solution is established for the post-buckling of panels [17,6,18,7].

Generally, the governing equations are derived analytically while
the solution is obtained numerically for reasons of non-linearity. The
following assumption is taken to hold in the early stage of post-
buckling: The post-buckling equilibrium stress/displacement state is
close to the fundamental equilibrium state and is obtained by a small
variation of the stress/displacement field [17].

Solving the governing equation by the Ritz method has led to
various approaches. In the work by Koiter et al. [17] on the post-
buckling of a cylindrical panel under axial compression, the variation
of the full displacement field due to post-buckling is approximated
and the problem is solved with displacement unknowns only. In
the case of formulations of flat panel problems [18], the Airy stress
function y(x,y) and the out-of-plane displacement w(x, y) are the
unknowns that respectively enable the in-plane and the out-of-plane
variations of stress/displacement fields due to post-buckling to be
described. The selected unknowns are approximated by a finite sum of
kinematically (respectively statically) admissible displacement (respec-
tively stress) functions.

The accuracy of Ritz methods depends on the number of terms
in the sum, as observed by Bisagni et al. [18]. However, increasing
the number of terms may reduce the efficiency of the method. In
contrast, it is interesting to note that Koiter [19,17], and Vescovini
et al. [7] stated the following decomposition of the variation of
displacement field due to post-buckling Supg:

Supg =a x Up + 6U (5)

where a is the amplitude of the buckling mode up and 6t is a small
higher order variation. In accordance with this assumption, it was
shown by Vescovini et al. [7] that neglecting su still led to a small
error (less than 7%) in the load-displacement curves. In conse-
quence, the dependence of the accuracy of the approximation on
the number of Ritz functions is reduced, as is the total number of
unknowns (multiplier factors of the Ritz functions).

Despite the good agreement shown between the maximum
values of displacement and stress fields computed by the finite
element and semi-analytical methods when neglecting the higher
order variation terms [7], it should be noted that their distribu-
tions are significantly different. This may have an impact on the
design of structures. The higher order variations of displacement
field are thus of major importance when it comes to accounting
for the stress redistribution in post-buckling. The semi-analytical
methods are applied in the range of the early post-buckling stage,
which still allows more than twice the critical buckling load to be
reached in practice [7,18,17].

Finally, the review of semi-analytical methods highlights the
assumptions on stress and displacement fields that have enabled
the post-buckling behaviour of plates and shells to be predicted
efficiently. The Ritz method is indeed successfully rationalized
(two terms are easily computed and can reproduce the solution
with relatively good accuracy), which simplifies the user's choice
of truncation order of the Ritz functions and reduces the computa-
tion cost. From the standpoint of the finite element method, these
considerations could be useful to reduce the size of the models. In
Section 3, a method is presented which enables the use of a priori
knowledge from the semi-analytical methods to reduce the finite
element model.

2.2. Model reduction techniques in non-linear structural finite
element analysis

In structural mechanics, the finite element discretization of the
governing equations arises from the Galerkin method applied to
the variational formulation of the potential energy (1) [20]. The
approximation of the displacement field by means of piecewise
polynomial interpolation functions results in the matrix form of
the static equilibrium at time increment ¢, (6):
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Due to geometric non-linearities, the stiffness matrix K depends
on the displacement U. F, is the vector of external forces.
Hence a minimization problem can be written, the objective func-
tion of which is a norm of residual forces R(U) (Newton-Raphson
method), which leads to the iterative solving of the tangent
system (7) until a convergence condition is fulfilled. Index i
denotes iteration i:
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The projection-based model reduction techniques have been
applied to various non-linear problems [21,22,15,14,11]. By using
the a priori knowledge of the problems, they aim to reduce the size
of the matrix systems presented so as to speed up problem
solving. The displacement vector and its increments are basically
approximated by a combination of well-chosen Ritz vectors
(extracted from the a priori knowledge). The vectors form a
reduced basis (also called the Ritz basis) C that spans a subspace

Im(C) of RN, N being the number of degrees of freedom of

the initial FE problem. The approximate displacement and dis-
placement increment are denoted U. and sU. and are a linear
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