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a b s t r a c t

Modal interactions of a geometrically nonlinear sandwich beam with transversely compressible core in
the presence of combination internal resonance are investigated. At first, a geometrically nonlinear,
{2,1}-order theory is used to derived the equations of motion and the compatible boundary conditions of
the beam. Then, Galerkin's weighted residual method and the multiscale approach are used to address
the governing system. Next, modal interactions in the presence of combination internal resonance and
subjected to primary-resonance excitation are investigated. Finally, the commercial code ABAQUS is used
to validate the theoretical results we have obtained.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A sandwich panel is a layered structure consisting of two thin
face sheets which are bonded to a thick core layer. Within the
principle of sandwich construction, the face sheets carry the
tangential and bending loads while the core transmits the trans-
verse normal and shear loads. This special configuration brings us
an extremely low weight while retaining high bending stiffness
thanks to the adopted lightweight low-density core. In view of its
low weight, sandwich panels have extensive application in many
fields of engineering such as aerospace, aeronautics, automotive,
naval construction and civil engineering (see e.g., [1,2]). When the
thick core layer is made of a weak material, sandwich panels
would have complicated deformations, buckling behavior, and rich
dynamic features [3]. For example, different from the standard
laminated structures, the buckling modes of a sandwich panel
with weak core can be present in two scales: (1) global or overall
buckling, which is similar to Euler's buckling for homogeneous
columns, and (2) some local forms of buckling of the face sheets
called wrinkling (see e.g., [2,4] and the references thereof).
Expectantly, similar phenomena would arise in the vibration
responses of the sandwich panels.

It is well-known that nonlinear structures may display mani-
fold nonlinear characteristics such as multiple solutions, limit
cycles, subharmonic and superharmonic resonances, various
modal interactions, bifurcations and chaotic motions (see e.g.,

[5, pp. xv–xviii]). Among these behaviors, modal interactions pose
a particular concern since interactions between global and local
modes of a sandwich panel due to its soft and thick cores can
cause disastrous results if vibrational energy is transferred from
low-amplitude high-frequency modes to lower modes with high-
amplitude.

One necessary condition for the presence of modal interaction
is that the linear natural frequencies ωi are commensurate or
nearly commensurate, i.e., ∑n

i ¼ 1kiωi � 0, with ki being positive or
negative integers [5, p. xvii]. However, for sandwich panels, this
condition can be easily fulfilled and there may even exist numer-
ous groups of linear modes which simultaneously fulfill this
condition. As an example, Table 1 shows the first 15 linear natural
frequencies of a flat sandwich panel experimentally investigated
by [6]. Among these frequencies, the following combinations simul-
taneously fulfill the nearly commensurable condition: ω21ð45:0Þþ
ω41ð133:0Þ ¼ 178:0�ω42ð177:0Þ, ω12ð69:0Þþω42ð177:0Þ ¼ 246:0¼
ω14ð246:0Þ, ω22ð92:0Þþω23ð169:0Þ ¼ 261:0�ω24ð262:0Þ, 2ω21

ð90:0Þþω31ð78:0Þ ¼ 168:0�ω23ð169:0Þ, ω12ð69:0Þþω32ð129:0Þ ¼
198:0�ω33ð199:0Þ, ω21ð45:0Þþω13ð152:0Þ ¼ 197:0�ω33ð199:0Þ.
This motivates us to make an in-depth study of the nonlinear
vibration responses of sandwich panels.

To keep our effort to be focused, we consider in the present
paper a straight two-dimensional (2-D) sandwich panel with
transversely compressible core, which can be modeled as a sand-
wich beam, and investigate its nonlinear dynamic responses in
the presence of combination internal resonance. Towards this end,
an effective semi-analytical and semi-numerical method is used
to investigate the modal interaction phenomena of the sand-
wich beam in the presence of combination internal resonance.
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Specifically, a nonlinear sandwich structures theory originally
developed by Hohe and Librescu [7] is adopted to investigate the
sandwich beam with transversely compressible core. The theory
adopts the standard Kirchhoff hypothesis for the face sheets
whereas a {2, 1}-order power series expansion is introduced for
modeling the core's displacements. After incorporating the non-
linearity of deformation of the sandwich beam, the equations of
motion and the compatible boundary conditions are derived from
an extended Hamilton's principle [8]. Then, Galerkin's method and
the method of multiple scales are adopted to semi-discretize and
solve the related nonlinear problems. Next, modal interactions in
the presence of combination internal resonance are analytically
investigated and the solvability conditions are numerically inte-
grated via the 4th-order Runge–Kutta method (see e.g., [8,
pp. 214–222]). Finally, for the purpose of validating the preceding
theoretical results, the commercial finite element code ABAQUS [9]
is used to simulate the nonlinear vibration responses of the
sandwich beam subjected to primary-resonance excitation. The
fast Fourier transform (FFT) is further used for the frequency-
domain analysis.

2. Kinematics and constitutive relations

We will consider a symmetric sandwich beam with respect to
its mid-surface (see Fig. 1). The thickness of each of the face sheets
and the core are denoted by tf and tc, respectively, while its length
is denoted by ℓ. A Cartesian coordinate system x2�x3 is adopted as
shown in Fig. 1.

For modeling the sandwich beam, we follow the theoretical
framework provided in [7], in which, the displacements ui (i¼2,3)
of the three layers of the sandwich beam are individually
expanded into power series with respect to x3. For the face sheets,
the classical Kirchhoff hypothesis is adopted whereas the second-
order power series expansion is used for the core layer's horizontal
displacement, and the first-order power series expansion is used
for the core layer's vertical displacement. It is termed as the {2,1}-
order theory according to the name convention proposed in [10].
As a result, the following expressions for the displacement field of
the face sheets and the core layer are postulated.

For the face sheets:

vt2 ¼ ua
2þud
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where u2 and u3 denote displacements in the x2 and the x3
directions of a point on the mid-surface, respectively, whereas v2
and v3 signify displacements of any point of the beam; tc and tf

denote, respectively, the thickness of the core and of the face
sheet. Superscripts a and d signify, respectively, the average and
the half-difference of the top and the bottom face sheets’ mid-
surface displacements utj and ubj . That is

ua
j �

1
2
ðut

j þub
j Þ; ud

j �
1
2
ðut

j�ub
j Þ; j¼ 2;3 ð2aÞ

and subscripts t and b denote the top and the bottom face sheets,
respectively. Furthermore, u3;2 � ∂u3=∂x2.

For the core layer:
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here, displacement function Ωc
2 describes the warping of the core.

We note that Eqs. (2) and (3) involve five basic unknown functions,
ua
2;u

d
2;u

a
3;u

d
3;Ω

c
2. The displacement field at points on the interfaces

between face sheets and the core is assumed continuous.
To approximate the geometrical nonlinear effect, the beam's

deformation is described in terms of the nonlinear Green–Lagrange
strain tensor. The components of the strain tensor are given by

ε22 ¼ v2;2þ
1
2
ðv3;2Þ2; ε33 ¼ v3;3þ

1
2
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The sandwich beam theory presented above is not restricted

to any kind of specific material model. Nevertheless, orthotropic
materials are assumed for both face sheet and core layer. The core
is further assumed to be weak, i.e., sc22 is negligible [3]. To the 2-D
problem, we are addressing the stress–strain relations for the face
sheets and the core can be represented as
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Introducing the concept of reduced stiffness (see e.g.,[11]),
the stress–strain relations for the face sheets and the core can be
summarized as

sf22 ¼Q
f
22ε

f
22; sf23 ¼ Qf

44γ
f
23 ð6aÞ

sc33 ¼Qc
33ε

c
33; sc23 ¼Qc

44γ
c
23 ð6bÞ

where the reduced stiffness Q
f
22 �Qf

22�½ðQf
23Þ2=Qf

33�.

Table 1
Eigenfrequencies ωmn (Hz) of a flat sandwich panel.

m n Note

1 2 3 4 5

1 23.5 71.0 146.5 245.3 362.5 Present study
69.0 152.0 246.0 381.0 [1] (exp.)

23.0 71.0 146.0 244.0 360.0 [1] (num.)
2 45.1 92.1 166.7 264.5 Present study

45.0 92.0 169.0 262.0 [1] (exp.)
45.0 91.0 165.0 263.0 [1] (num.)

3 80.7 126.8 200.1 Present study
78.0 129.0 199.0 [1] (exp.)
80.0 126.0 195.0 [1] (num.)

4 130.0 174.9 Present study
133.0 177.0 [1] (exp.)
129.0 174.0 [1] (num.)

5 192.3 Present study
188.0 [1] (exp.)
191.0 [1] (num.)

Fig. 1. Geometry of a sandwich beam.
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