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A B S T R A C T

When a train runs on soft ground it can approach or even exceed the speed of surface waves in the ground. Under
such conditions the amplitudes of the track response increase considerably. Moreover, a resonance-like phe-
nomenon can occur in which a clear oscillation trail can be observed behind the moving axle loads. An in-
vestigation is presented of this resonance frequency and the critical speed effect for a track on a layered half-
space subject to a moving load. Three different methods are used to investigate this resonance frequency: (i) the
spectrum of the response to a moving load, (ii) analysis of the dispersion curves of the ground, and (iii) frequency
analysis of the response to a stationary load. A parameter study is presented of a layered half-space ground with
different P-wave speeds, S-wave speeds, and depth of the upper layer. The critical speeds are found in each case;
in such a layered ground, the critical speed is greater than the Rayleigh wave speed of the soft upper layer due to
the influence of the underlying half-space. The oscillating frequencies are shown to vary with the speed of the
moving load, tending to reduce when the load speed increases. The P-wave speeds of both the upper layer and
the underlying half-space are found to have negligible influence on the critical velocity and on the oscillating
frequency; the S-wave speed of the half-space has only a small influence. Larger differences are found when the
depth of the layer is varied. Finally, a formula for calculating this resonance frequency is proposed.

Introduction

High-speed trains have become an important means of public
transport due to their efficiency and relatively low impact on the en-
vironment. However, with increasing train speed, especially when the
track alignment crosses soft ground, the track deflections increase
dramatically as the train speed approaches the speed of surface waves
in the soil [1,2]. Furthermore, when the speed of a load moving on a
layered ground exceeds the Rayleigh wave speed of the upper layer, a
resonance phenomenon is observed in which the track and ground
surface behind the load oscillates with a certain frequency [1,3–5].
These phenomena were also found in the site measurements at Ledsgård
in Sweden [6]. To avoid these effects, costly soil improvement or ad-
ditional foundation structures may be required such as strengthening
the embankment [7] or ground stabilisation using lime cement columns
[8].

For an ideal homogeneous soil the critical speed is readily de-
termined as the Rayleigh wave speed of the soil [9]. For a layered
ground the phenomenon is more complex, but nevertheless a number of
authors have investigated the critical speed effect and methods to
evaluate it [9–14]. However, only limited attention has been given to
the resonance-like phenomenon that occurs in some situations for a
layered half-space.

Even in cases where the moving load speed is lower than the critical
speed, significant vibration may occur that is associated with this re-
sonance-like frequency, especially if it coincides with a strong excita-
tion frequency from the train, for example due to the axle-passing fre-
quencies [15]. Ground-borne vibration has become an important issue
due to environmental concerns and, to give a correct assessment of the
vibration levels occurring while train is passing, a numerical model that
can correctly characterise the dynamic behaviour is required. Soil
damping is an important factor for modelling the ground-borne vibra-
tion and in time domain models Rayleigh damping is commonly used
for soil properties [12,16,17]. To apply the Rayleigh damping model, as
used by Shih et al. [16], an appropriate ‘dominant’ frequency is re-
quired to select the corresponding damping coefficients. This is im-
portant not only to ensure the wave energy is sufficiently attenuated at
the boundary of the model but also to represent the soil damping be-
haviour more correctly. Better understanding of this resonance phe-
nomenon can thus lead to a more representative soil damping model
and, together with the appropriate excitation mechanisms, to a better
assessment for the ground-borne vibration.

Wave propagation in a homogeneous half-space is non-dispersive
and consequently no resonance frequency is found for a moving point
source [16]. In contrast, a resonance frequency can be found for layered
half-space soil. This resonance frequency is usually identified with the
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‘cut-on frequency’ of the upper layer, above which the waves begin to
propagate in the upper soil layer [18]. It is indicated in the literature
that the resonance frequency is related to the depth of the layer and the
P-wave speed in the first layer [17–19]. A modified formula, based on
the shear wave speed of the first layer and its depth with a cut-off
factor, was introduced by Mehzer et al. [12]. However, the effect of
load motion, which may modify the frequency, is not discussed in these
papers.

In this paper an investigation is carried out into this resonance
phenomenon and its dependence on the properties of a layered ground.
This analysis is carried out by using a three-dimensional semi-analytical
method [1,5]. This model is based on the formulation of Haskell and
Thomson [20,21] and uses a two-dimensional Fourier transform over
the axial and transverse coordinates to represent the layered ground in
terms of the corresponding wavenumbers. The track is represented by a
layered beam structure coupled to the ground over a finite-width strip.
A static or moving load can be considered which may be either constant
or harmonically varying.

Herein three different methods are used to study this resonance
frequency for a track on a layered half-space. First, the semi-analytical
method presented in [5] is used to calculate the rail receptance due to a
stationary harmonic load applied on the rail. Second, a quasi-static load
moving along the track is considered using the same model as in [1].
The frequency spectra of the response in the non-moving frame due to
the moving load are obtained and used to identify the resonance fre-
quency. Third, following the method in [10], dispersion curves from the
layered half-space with and without the track are calculated and used to
estimate the resonance frequency for different load speeds by finding
the intersection points between the dispersion curves and the load
speed line.

Results are presented for a layered half-space in which various va-
lues are considered for the depth of the upper ground layer and the P-
and S-wave speeds of the layer and the substratum; results are also
compared with those for a homogeneous half-space. In all cases the
upper layer is considered to be softer than the underlying half-space, as
is commonly found in practice. The critical speed is determined first for
each case from the semi-analytical model. Then the resonance fre-
quency is assessed using the three different methods and the results are
compared. Finally, the results from the above methods are compared
with the results from the formulae indicated in [12,17,18] and a revised
formula is proposed.

Parameters used in the study

A range of different cases are introduced here for a ground with a
single soft layer above a stiffer half-space. The parameters defining
these cases are listed in Table 1. These are the P-, and S-wave speeds for
the upper layer and the underlying half-space, as well as the depth of
the first layer. The S-wave speed of the upper layer is kept fixed at
60m/s and the other wave speeds are varied relative to this. The soil
density is set to 2000 kg/m3 throughout. The damping is represented by

a constant damping loss factor of 0.05 in each case.
The chosen reference soil properties for the upper layer corresponds

to very soft soil, which approximately represents a typical soft clay.
Although in such a situation the soil may have a high water content, the
main focus of the present work is to look generically at how the wave
speeds of the soil influence the dynamic behaviour of the layered
ground. The wave speeds have therefore been chosen somewhat arbi-
trarily for convenience in the parametric analysis. The actual values of,
for example, the mass density are less important for the present study.

In the initial case, the P-wave speed of the upper layer is set to
120m/s and the P- and S-wave speeds of the substratum are assumed to
be double the values in the upper layer. This case is used as the re-
ference case for comparison with the others. In cases 2 and 3, the P-
wave speeds of the two layers are varied whereas in cases 4 and 5, the S-
wave speed of the underlying half-space is varied while keeping the P-
wave speed equal to twice the value of the S-wave speed. In cases 6 and
7, the layer depth is varied while keeping the same wave speeds as case
1. The homogeneous half-space (case 8) is an extreme case with an
infinitely deep upper layer.

The track properties used in each case are listed in Table 2 and are
largely based on the ballasted track used in [22]. The value for the rail
pad stiffness is equivalent to a stiffness of 300 MN/m per pad, which
corresponds to a medium stiffness rail pad. In the current model, the
railway track is considered as a straight ballasted track at the surface of
the layered elastic half-space, as shown in Fig. 1(a). Linear dynamic
behaviour is assumed throughout. The track is considered invariant in
the longitudinal (x) direction and is modelled as a beam supported by
vertical springs representing the rail pads, a layer of mass representing
the sleepers and a further layer of springs with consistent mass re-
presenting the ballast, as shown in Fig. 1(b). Since each axle load is
distributed equally between the two rails, a single beam is used to re-
present both rails.

The model is formulated in the wavenumber-frequency domain and
uses the transfer function matrices for the ground formulated in [5] and
[1] in a frame of reference moving with the loads. For the calculation of
the response in the wavenumber domain, equally-spaced wavenumbers
are used for the directions both parallel and normal to the track. In each
direction the maximum wavenumber is set to 10π rad/m and the
number of wavenumber points in each direction is set to be 2048. The
inverse Fourier transform is carried out using the FFT algorithm in
order to transform the response from the wavenumber to the space
domain. The maximum wavenumber and the wavenumber discretiza-
tion define spatial resolution and the sizer of the spatial domain and are
chosen to ensure an efficient and sufficiently accurate Fourier trans-
form.

Investigation of the critical speed

To determine the critical speed, the maximum displacement on the
track induced by a moving point load is calculated by using the three-
dimensional semi-analytical track/ground model of [1]. The results for

Table 1
Parameters used to define the ground.

No. layer
depth, H
(m)

1st layer
P-wave,
cp1 (m/s)

1st layer
S-wave,
cs1 (m/s)

2nd layer
P-wave,
cp2 (m/s)

2nd layer
S-wave,
cs2 (m/s)

Critical
speed, Vcr

(m/s)

1 2 120 60 240 120 79
2 2 240 60 240 120 80
3 2 240 60 480 120 80
4 2 240 60 480 240 82
5 2 120 60 170 85 70
6 4 120 60 240 120 62
7 8 120 60 240 120 57
8 ∞ 120 60 – – 55

Table 2
Track properties (for two rails).

Parameter Value Units

Rail mass 120 kg/m
Rail bending stiffness 1.28×107 Nm2

Rail damping loss factor 0.01
Railpad stiffness per unit track length 1.0× 109 N/m2

Railpad damping loss factor 0.1
Sleeper mass per unit track length 541.8 kg/m
Ballast stiffness per unit track length 4.64×109 N/m2

Ballast mass per unit track length 1740 kg/m
Ballast damping loss factor 0.04
Ballast width at the bottom 3.2 m
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