
Contents lists available at ScienceDirect

Tunnelling and Underground Space Technology

journal homepage: www.elsevier.com/locate/tust

Rockburst prediction and classification based on the ideal-point method of
information theory

Chen Xua, Xiaoli Liua,⁎, Enzhi Wanga, Yanlong Zhengb, Sijing Wangc

a State Key Laboratory of Hydro Science and Engineering, Tsinghua University, Beijing 100084, China
bDepartment of Civil Engineering, Monash University, Clayton, Victoria 3800, Australia
c Institute of Geology and Geophysics of the Chinese Academy of Sciences, Beijing 100029, China

A R T I C L E I N F O

Keywords:
Rockburst prediction
Ideal point method
Information theory
Principal component analysis
Mutual information entropy

A B S T R A C T

A rockburst is a sudden dynamic process under high geostress conditions where rocks spontaneously explode.
This is an important geological problem for underground construction processes. A rockburst could lead to
equipment damage, casualties, and construction delays. Therefore, rockburst prediction and classification are
extremely significant. A prediction and classification model is established by introducing the basic theory of the
ideal-point method, considering the rockburst mechanism. Three parameters are selected as evaluation indexes,
including the rock stress coefficient (σθ/σc), rock brittleness coefficient (σc/σt), and elastic energy index (Wet). To
eliminate any correlation between the parameters, a principal component analysis based on mutual information
(MIPCA) for the rockburst feature selection is used to calculate a new group of parameters. Then, using the
information-entropy theory, the weight coefficients of these new evaluation indexes are confirmed. Finally,
using statistics-related projects, engineering-case analyses show the feasibility and applicability of the proposed
model. A computer evaluation program with a rockburst-classification interface was developed, based on the
proposed model. This model and computer software can be used for other similar engineering practices in the
future.

1. Introduction

A rockburst is a dynamic process in high geostress conditions, where
a rapid release of energy causes rocks to spontaneously explode. This
could lead to equipment damage, casualties, and construction delays
(Cai, 2013; Ortlepp and Stacey, 1994). Rockbursts’ complicated me-
chanism and numerous classification criteria make them an extremely
tough problem for deep underground construction and mining en-
gineering. Many rockburst-evaluation standards are commonly em-
ployed in current practice (as shown in Table 1). They include various
factors that occur in rockbursts, and have played an important role in
rockburst prediction.

Rockburst prediction is the key to preventing rockbursts (Cai,
2016). Peng et al. (2010) divided rockburst prediction into two cate-
gories: long-term and short-term. Long-term prediction’s main objective
is to serve as a guide for decision-making during the initial stages of a
project. Short-term predictions aim to predict the time and location of a
rockburst occurrence (Li et al., 2017). This research considers long-term
rockburst prediction.

Many scholars have investigated rockburst predictions using data-

mining methods and artificial intelligence. For instance, Wang et al.
(1998) proposed a rockburst-prediction method based on fuzzy com-
prehensive evaluation. Some researchers (Feng et al., 1998; Li et al.,
2005; Liang, 2004) have applied neural networks to rockburst predic-
tions, and Dorigo and Blum (2005) employed an ant-colony optimiza-
tion. Others have employed multidimensional extension theories
(Sandru et al., 2013; Zuo and Chen, 2007) to predict rockbursts. In
addition, many other mathematical methods (Li and Liu, 2015; Wang
et al., 2010; Yan and Ma, 2013; Zhao, 2005) have been employed to
predict rockbursts.

The above theories use different angles to forecast the rockburst,
leading to certain prediction results. However, because of the com-
plexity of the rock mass and a variety of influencing factors, it is very
difficult to exactly predict the space–time distribution of a rockburst.
Thus, the results of various prediction methods should be analyzed
comprehensively. Moreover, each method has its own advantages and
disadvantages, and understanding, predicting, and controlling rock-
bursts still pose a considerable challenge for underground engineering.

The rockburst mechanism is complex and includes many predictive
indexes. However, most previous evaluation methods only base the
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model on its construction-project background, so they cannot serve a
wide range of applications (Coli et al., 2010; Feit et al., 2002; Lv et al.,
2005; Zhang and Fu, 2008; Zhang et al., 2004). On the other hand,
almost all projects include the rock stress coefficient, rock brittleness
coefficient, and elastic energy index; therefore, we selected these three
common rockburst parameters as evaluation indexes for a wide range of
applications. A model for predicting and classifying rockbursts is pro-
posed, based on the ideal-point method of information theory. Com-
pared with other prediction methods, we show the feasibility and ap-
plicability of our proposed method based on statistics-related projects.

2. Methodology using the ideal-point method of information
theory

2.1. Principal component analysis based on mutual information (MIPCA)

To establish the predictive models and avoid the duplication of in-
formation among the selected parameters in this research, principal
component analysis (PCA) was employed in the initial analysis stage.
PCA is a statistical analysis method based on the K-L transformation
(Jorgensen, 2007). Its basic idea is to reduce the dimensions, while
ensuring that the reduced-dimension data sets keep as much of the
original information as possible.

Using a linear conversion, the original space is converted to a low-
dimensional principal component space, and the new features after the
conversion are the main component. Fig. 1(a) shows a three-variable
data set, which is measured in the X-Y-Z coordinate system. For a given
data set, PCA reduces the dimension, as shown in Fig. 1(b). F1 is the
principal direction and F2 is the second important direction in Fig. 1(b)
and (c). Then, PCA finds the axis system (i.e., the F1-F2 system in
Fig. 1(c)).

In previous research, PCA has usually computed new variables,
based on linear combinations of the original variables (Salimi et al.,
2016). These variables are selected by calculating the covariance matrix
(Engelbrecht, 2007; Jolliffe, 1986). However, the covariance matrix can
only reflect a linear correlation between two variables; it cannot de-
termine nonlinear relationships. Mutual information (Shannon and
Weaver, 1963) can determine the total amount of information between
two variables, based on information theory (Fan et al., 2013). The best
advantage of the mutual information method is that it is not limited to
linear relationships. Therefore, MIPCA’s applicability is wider than

PCA, and MIPCA has attracted wide attention in the feature-selection
field (Battiti, 1994; Kwak and Choi, 2002; Yang and Moody, 1970). In
this paper, we use MIPCA to determine the weight coefficients of the
evaluation indexes.

Mutual information can define the interdependence strength be-
tween variables that are not limited to a linear correlation, and it re-
presents the amount of information that is common to both variables.
For two given random variables X and Y, if p(x) represents the X
marginal distribution, then p(y) represents the Y marginal distribution
and p(x, y) represents the joint probability distribution of X and Y.
Then, the mutual information I(X; Y) of X and Y is defined as follows:
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When variables X and Y are completely independent, the mutual in-
formation has a value of 0, which means there is no overlapping in-
formation between the two variables. In contrast, the higher the degree
of interdependence, the larger the amount of mutual information; thus,
the two variables have more information in common. The MIPCA cal-
culation process is as follows:

Step 1: Calculate the mutual information matrix:
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where ∑IXY serves as the value of the mutual information, and the
mutual information matrix is a real symmetric matrix (which means I (i,
j)= I (j, i)). The diagonal elements of the matrix represent the vari-
able’s self-information and information entropy, and the non-diagonal
elements represent the mutual information between two variables.

Step 2: Calculate the eigenvalues and eigenvectors of the mutual
information matrix, according to Eqs. (3) and (4). Then, sort the ei-
genvalues in descending order and find the corresponding eigenvectors.

∑− =λE I 0XY (3)

∑′ =B I B Λ,XY (4)

where λ denotes the eigenvalue and E is a unit matrix. B (β1, β2, …, βp)
is a matrix of feature vectors, B’ is the matrix transposition of B, and Λ
(μ1, μ2, …, μp) represents a diagonal matrix consisting of eigenvalues.

Table 1
A summary of criteria for rockburst.

Proposed by Parameters Classification standard

None (I) Light (II) Moderate (III) Strong (IV)

Russenes criterion (Russebes, 1974) σθ/σc <0.2 0.2–0.3 0.3–0.55 > 0.55
Hoek criterion (Hoek and Brown, 1980) σθ/σc 0–0.34 0.34–0.42 0.42–0.56 0.56–0.70
Rock brittleness coefficient (Wang et al., 1998) σc/σt >40 26.7–40 14.5–26.7 < 14.5
Depth prediction critical (Hou and Wang, 1989) Hcr Critical depth: 312.6–442.4
Elastic energy index (Wang et al., 1998) Wet <2 2–3.5 3.5–5 >5

Note: σθ is maximum tangential stress, MPa; σc is uniaxial compressive strength, MPa; σt is uniaxial tensile strength, MPa; Hcr is depth, m; Wet is elastic energy index.

(a) Data representation                  (b) Dimension reduction     (c) Second dimension reduction 

Fig. 1. Principal components determination.
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