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A B S T R A C T

A semi-analytical solution for the groundwater ingress into a lined tunnel in a semi-infinite aquifer is derived
based on the conformal mapping technique. The new solution considers the property of the lining, such as the
permeability coefficient of the lining as well as the external and internal lining radii. A numerical model is
established using the software COMSOL to verify the semi-analytical solution, and a good agreement is found.
Parameters including water layer thickness, burial depth of the tunnel, permeability coefficient of the lining and
the lining thickness are discussed in detail. This paper explains why the water ingress obtained from early
research should be reduced by Heuer’s empirical factor 1/8. Moreover, an optimal burial depth is found when
the permeability of the lining is close to the permeability of the aquifer.

1. Introduction

Water ingress is a key issue affecting the construction and operating
phases of drained tunnels (Anagnostou, 1995; Arjnoi et al., 2009; Kong,
2011). Moreover, some researchers have determined that most tunnels
eventually act as drains (Atkinson and Mair, 1983; Wongsaroj et al.,
2007). Therefore, many studies are devoted to estimating the accurate
water ingress into tunnels mainly using analytical and numerical
methods (Nam et al., 2007; Park et al., 2008a; Shin et al., 2002, 2011).

Early researchers (Goodman et al., 1965; Polubarinova-Kochina,
1962) derived approximate expressions for the water ingress into
deeply buried tunnels. Lei (1999) acquired a solution without the as-
sumption of large burial depth based on the image method (Harr,
1962). Joo and Shin (2014) studied the relationship between water
pressure and water ingress into underwater tunnels for laminar and
turbulent flows. In recent literature, another method alleged that con-
formal mapping could be used to investigate different boundary con-
ditions along the tunnel circumference (El Tani, 2003; Kolymbas and
Wagner, 2007). Huangfu et al. (2010) validated these analytical solu-
tions with the software FLAC3D. A revisit was given by Park et al.
(2008b) regarding the analytical solutions based on the conformal
mapping in this field.

However, nearly all the aforementioned literature regards the lining
layer as the isopotential surface, which is too simplified when con-
sidering lining properties such as the lining thickness and permeability.
This may be the reason why the water ingress prediction from earlier
research is usually larger than practical measurement. For instance,
Raymer (2001) found the Goodman equation overestimated tunnel

inflows after reviewing a number of tunneling case studies and pro-
posed an equation for estimating tunnel water inflow comprising a
modified version of the Goodman equation, where a reduction factor,
i.e. 1/8, is applied. With the purpose of deriving an accurate solution
for water ingress, this paper considers lined tunnels within a semi-in-
finite aquifer as a double stratum model based on the conformal map-
ping technique. A numerical simulation is conducted to verify the so-
lution. A parameter analysis, including the lining permeability, burial
depth and tunnel radius, is discussed.

2. Mathematical statement

2.1. Basic assumptions

As shown in Fig. 1, a circular lining (domain II) with external and
internal radii denoted as R and r, respectively, is buried in a semi-in-
finite aquifer (domain I). Here, burial depth h is defined as the distance
between the center of the tunnel and the mud line. The aquifer is
covered by the water layer with a height of H, and the mud line is
chosen as the elevation reference datum. Additionally, this paper is
based on the following assumptions.

(1) The aquifer is homogeneous with isotropic permeability;
(2) The flow is in a steady state and is governed by Darcy’s law;
(3) The pore pressure on the inner circumference of the lining u is

constant.

Assumption (1) may seem to be a strong simplification because of
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inhomogeneous distribution of hydraulic conductivity in the aquifer,
but such process is still reasonable in terms of water ingress prediction
as a pilot study (Kolymbas and Wagner, 2007).

2.2. Governing equation

According to the Darcy’s law and mass conservation as well as the
aforementioned assumptions, the governing equation for the seepage
field in this problem is the Laplace equation, as shown below
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where ϕ is the hydraulic head, equal to the sum of pressure and ele-
vation heads, i.e.
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where p is the water pressure and γw is the unit weight of water.

2.3. Boundary conditions

From Section 2.1, two boundary conditions can be obtained, which
are BC1:

==ϕ H|y 0 (3)

and BC2:

= ++ + =ϕ h y|x y h r u( )2 2 2 (4)

where hu, equal to u/γw, is the pressure head inside the lining layer.

3. Semi-analytical solution

The method of conformal mapping can facilitate the derivation of
the hydraulic head in this study (Cao, 2014; Verruijt, 1997). As shown
in Fig. 2, the semi-infinite domain I in plane – Z is mapped as a ring
domain in plane – ζ with the internal and external radii, α and 1, re-
spectively, based on the complex mapping function in Eq. (5).
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where = −a h R2 2 , and ξ and η are the Cartesian coordinates of an
arbitrary point in plane – ζ.

According to the property of this technique, the governing equation
in the aquifer can be rewritten as shown below

∂
∂

+
∂
∂

=
ϕ

ξ
ϕ

η
0

2

2

2

2 (6)

The general solution for Eq. (6) in domain I in plane – ζ in terms of
polar coordinate is shown as follows (Park et al., 2008b):
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Similarly, the general solution for Eq. (1) in domain II can be given
as
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Eq. (8) has the following two boundary conditions at ρ= r or R in
the form of Fourier series based on Eqs. (4) and (7),
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cording to the theory of Fourier series, the coefficients before Eq. (8)
and Eqs. (9) and (10) should be the same, so A2n and B2n have the
following expressions
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Note that there are n+1 unknowns, i.e., C1 and C2n, in Eqs.
(7)–(11), so n+1 equations are needed to calculate the values of these
unknowns. The seepage continuity condition at the interface between
the tunnel and aquifer can offer such an equation set, as shown in Eq.
(12).
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where kl and ks are the hydraulic conductivities of the lining and
aquifer, respectively.

The left side of Eq. (12) can be expanded as the Fourier series with
the coefficient for each term as shown below.

Fig. 1. Schematic diagram of underwater tunnel.

Fig. 2. Conformal mapping.
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