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a b s t r a c t

Prediction of the maximum surface settlement due to shallow tunnelling in soft grounds is a valuable
metrics in ensuring safe operations, particularly in urban areas. Although numerous researches have been
devoted to this issue, due to the complexity and a large number of the effective parameters, no compre-
hensive solution to the problem is available. In this study, a shallow tunnel classification system (STCS),
based on maximum settlement, is proposed. The STCS holds on the results of several tunnelling projects
around the world. The classifier categorises a tunnel based on geometry, ground, and performance char-
acteristics. A decision tree classification method, after training with 20 cases, was successful to predict
the maximum settlement for 14 tunnelling projects. The maximum surface settlement predictions were
in the form of assigning a class label to each tunnel. Four tunnel classes were defined as follow: (i) class A
(maximum settlement < 9.9 mm), (ii) class ‘‘B’’ (10 6maximum settlement < 19.9 mm), (iii) class ‘‘C’’
(20 6maximum settlement < 29.9 mm), and (iv) class ‘‘D’’ (maximum settlement P 30 mm). The most
explanatory independent variables were selected, by the STCS, as follow: tunnel depth, diameter, volume
loss, and normalised volume loss. The proposed classification scheme can be employed as a decision mak-
ing aid in settlement prediction/prevention in shallow tunnelling in soft grounds. The STCS is proposed as
a supplemental tool to the observational methods, and it is not expected to be a stand-alone measure for
settlement.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Shallow tunnelling in soft grounds induces both lateral and ver-
tical surface movements (Boscardin and Cording, 1989). Ground
settlement (surface vertical movement) is a critical threat to both
the surface (Papastamos et al., in press; Melis et al., 2002) and sub-
surface facilities (Vorster et al., 2005), particularly in urban areas
(Liao et al., 2009). As a result of the rapid growth in infrastructure
developments, many subway/metro tunnels are under construc-
tion around the world. Lower depth and soft ground are the two
major characteristics of these underground spaces which occasion-
ally result in considerable surface settlements. Thus, settlement
control is a critical phase of every shallow underground construc-
tion activity to ensure both the surface and underground safety. A
primary essential information for settlement control is an
estimate/prediction of the magnitude of surface movements before
tunnelling. To address this important issue, several researchers

have attempted to predict (maximum) surface settlement induced
by shallow tunnelling. Because of the complexity and unknown
relationships and interactions between the many effective param-
eters on surface settlement, deriving a closed form mathematical
solution is very difficult (Peck, 1969; Rowe, 1983; Verruijt and
Booker, 1996). Hence, many researchers tried to employ other
approaches, including empirical (Hsieh and Ou, 1998; Lee et al.,
1999; Zhang et al., 2009; Chen et al., 2011), numerical (Melis
et al., 2002; Sun and Liu, 2002; Kasper and Meschke, 2004; Ding
et al., 2004), and artificial intelligence methods (Kim et al., 2002;
Suwansawat and Einstein, 2006; Neaupane and Adhikari, 2006).
Although the analytical, empirical, numerical, and artificial intelli-
gence methods have several advantages in addressing the issue;
there are major constraints in application. For instance, in analyti-
cal methods there are many simplifications such as a plain strain
assumption (Chou and Bobet, 2002), elastic behaviour (Park,
2004), and/or soil isotropy (Franzius et al., 2005).

In empirical methods such as (González and Sagaseta, 2001),
the interpretations will be applicable only in the same conditions
(Ou et al., 1993) and, hence, there will be a lack of model general-
isation (Bobet, 2001).
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In the numerical methods, model building should be very
sophisticated by incorporation of many details (Addenbrooke
et al., 1997; Lee and Ng, 2005). This leads to very time consuming
model building and running. In artificial intelligence methods (e.g.,
artificial neural networks), the outputs are in the form of a black
box solution (Huang, 2009), hence, no functional relationship will
be rendered (Lim et al., 2000). Consequently, no comprehensive
solution to the problem of settlement modelling and prediction
is available. Perhaps the most widely used techniques in surface
settlement prediction are observational methods (Terzaghi and
Peck, 1948, 1967; Meyerhof, 1956, 1965; DeBeer and Martens,
1957; Hough, 1969; Peck and Bazaraa, 1969; Burland and
Burbidge, 1985; Afifipour et al., 2011; Ghorbani et al., 2012).
These methods are based on direct observation of settlement in
actual shallow tunnels or prototypes. The direct observations have
been correlated with in situ test results such as standard/cone pen-
etration tests.

In this study, a shallow tunnel classification system (STCS),
based on maximum settlement, is proposed. The STCS holds on
the results of several tunnelling projects around the world. The
classifier categorises a tunnel based on geometry, ground, and tun-
nelling performance parameters. A tunnel will be classified into
one of the four classes A–D for very limited to very large settle-
ments, respectively. The classification will be used in the assess-
ment of the buildings and adjacent structure protection. Several
tunnelling projects considered a total settlement of less than
1 cm (class A, see Table 1) to be insignificant to damage surface
facilities. The Redline and MGLEE Los Angeles metro, West Side
CSO Tunnel, Portland, Oregon; East Side CSO Tunnel, Portland,
Oregon; ECIS, Los Angeles, California are some examples of the suc-
cessful urban shallow tunnelling projects that adopted a 1 cm crit-
ical settlement policy (Parsons Brinckerhoff Co., 2012).

Classification and regression trees are machine-learning meth-
ods for constructing prediction models from data. Olden et al.
(2008) mentioned the advantages of the decision trees as follow:
(1) inherently nonparametric and, therefore, not affected by
heteroscedasticity that affects parametric procedures; (2) invariant
to monotonic transformations of the data, thus eliminating the
need for data transformations; (3) able to handle mixed numerical
data, including categorical, interval, and continuous variables; (4)
able to deal with missing variables; (5) not affected by outliers
(the outliers are isolated into a node, and have only a minimal
effect on splitting); (6) able to detect and reveal interactions in
the data set; (7) able to effectively deal with higher dimensionality
(i.e., it can identify a reduced set of important variables from a
large number of submitted variables); (8) relatively simple to
interpret graphically.

Although decision trees have been successfully employed in
solving a wide range of geotechnical, geological, and environmen-
tal problems (Glastonbury and Fell, 2008; Saito et al., 2009; Häring
et al., 2012; Emmer and Vilímek, 2014), this is the first application
of the method in tunnel classification based on settlement.
Decision tree classification was opted in this study due to the
above-mentioned advantages, as well as its successful application
in a wide range of geotechnical/geological engineering disciplines.
Thus, the novelty of the work is in the application of the decision

trees for a better understanding/forecasting of ground settlement
induced by shallow tunnels in soft grounds. The contribution of
this study is in proposing a tunnel classification system (STCS)
based on the amount of maximum settlement. Applicability of
STCS will be in the estimation of settlement before starting the
tunnelling project by assigning a class label to the tunnel.
However, the proposed classifier is limited to the case of shallow
tunnelling in soft grounds and is able to predict only the maximum
vertical settlement.

2. Case studies

2.1. Database

Parameters of several case studies around the world (UK, USA,
Canada, Thailand, Brazil, and Germany) were obtained from
(Neaupane and Adhikari, 2006). The tunnels were constructed for
metro or sewer applications. There were 34 cases with 7 variables,
including: tunnel depth (D), diameter (Z), volume loss (Vs), nor-
malised volume loss (Vs/Vt), soil strength (Cu), ground water level
(GW), and construction method (CM) (see Table 2). Vs/Vt is the ratio
of the volume of the settlement through per unit length of the tun-
nel (Vs) to the ground loss during excavation (Vt). It is an important
variable in calculating the ground loss (Atkinson and Potts, 1979).
The variables D, Z, Vs, and Vs/Vt are geometric parameters. The Cu

and GW are ground parameters. The CM is a tunnelling perfor-
mance parameter. Descriptive statistics of the measured maximum
settlements are graphically shown in Fig. 1. The mean and standard
deviation of the observations are 18.4 mm and 13.1 mm, respec-
tively. Application of the Anderson–Darling normality test
(Anderson and Darling, 1952), at 5% significance level, resulted in
a P-value of less than 0.005, which demonstrated the
non-normality of the observations. The strike marks in Fig. 1 shows
existence of several outliers in the settlement data. Non-normality
and outliers are problematic issues for several traditional statistical
methods that can be dealt with effectively by decision trees (Olden
et al., 2008). The statistics of other parameters are presented in
Table 3. The Application of the Grubbs’ test for outliers (Grubbs,
1950), at 5% significance level, revealed existence of several out-
liers in the variables depth, diameter, Vol. loss, Vs/Vt, and Cu. In
many statistical methods (such as multiple regressions) these out-
liers should be either removed or transformed to meet the assump-
tions of the methods. However, in decision tress the outliers can be
handled effectively. Hence, they were not altered in this study. All
variables, except for GW and CM, are numerical. The two linguistic
variables, GW and CM, were converted to numerical ones by
assigning integers. The GW was classified into two categories;
the water level above the tunnel crest was taken as 1, and below
the tunnel was taken as 2. In 31 cases (90%), the underground
water level was below the tunnel’s crest. The CM was classified
as 1 and 2 for hand-mined shield and mechanical shields, respec-
tively. Twenty one cases were hand-mined and the remaining were
mechanically shielded tunnels.

2.2. Parameter selection

Although there are many effective variables on shallow
tunnelling-induced settlement, the three major influential cate-
gories include: tunnel geometry, ground conditions, and tunnelling
performance (e.g., tunnelling rate). Tunnel depth and diameter
(Loganathan and Poulos, 1998) are the two important variables
that are related to the geometry. Mechanical properties of the
ground (soil), cohesion and friction angle, (Bernat and Cambou,
1998), and the underground water level (Wongsaroj et al., 2007)
are the two major variables in the category of ground conditions.

Table 1
Tunnels classes.

Maximum settlement (mm) Class

0–9.9 A
10–19.9 B
20–20.9 C
>30 D
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