

Available online at www.sciencedirect.com

Journal of Molecular Catalysis A: Chemical 273 (2007) 87-91

www.elsevier.com/locate/molcata

Binary *ansa*-lanthanidocenes/dialkylmagnesium systems versus single-component catalyst: Controlled synthesis of end-capped syndiotactic oligostyrenes

Anne-Sophie Rodrigues^a, Evgueni Kirillov^a, Bruno Vuillemin^b, Abbas Razavi^c, Jean-François Carpentier^{a,*}

> ^a Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, University of Rennes 1, 35042 Rennes Cedex, France
> ^b Total Petrochemicals, 64170 Mont-Lacq, France
> ^c Total Petrochemicals Research, Zone Industrielle C, 7181 Feluy, Belgium

> > Received 20 February 2007; accepted 27 March 2007 Available online 31 March 2007

Abstract

Combinations of the *ansa*-chloroneodymocene precursor [(Cp–CMe₂–Flu)Nd(μ -Cl)]₂ (**2**) and a dialkylmagnesium (1–100 equiv. versus Nd) have been explored for styrene oligomerization and compared to the single-component polymerization catalyst [Cp–CMe₂–Flu]Nd(allyl)(THF) (1). Binary systems derived from **2** and Mg(*n*-Bu)₂ or Mg(allyl)₂ are moderately active at 60 °C (1–8 kg PS mol Nd⁻¹ h⁻¹), yielding soluble oligostyrenes ($M_n = 1600-6500 \text{ g mol}^{-1}$, $M_w/M_n = 1.3-2.5$), which have an unprecedented high degree of syndiotacticity ($P_r = 94\%$, determined by ¹³C NMR spectroscopy) and are selectively end-capped by butyl or allyl groups (identified by ¹H NMR and/or MALDI-TOF-MS). The formation of the oligostyrenes is proposed to arise exclusively from a coordination/insertion mechanism, involving *in situ* generated Nd-alkyl species that are active for syndiotactic styrene polymerization and undergo chain transfer via transmetallation to excess dialkylmagnesium reagent. © 2007 Elsevier B.V. All rights reserved.

Keywords: Catalysis; Neodymium; Polymerization; Styrene; Tacticity

1. Introduction

Combinations of simple, readily available chlorolanthanidocenes or homoleptic lanthanide alkoxide precursors with dialkylmagnesium reagents have been shown to be effective catalysts for the polymerization of ethylene, α -olefins, styrene and methacrylates [1,2]. Because they feature single-site and "living-controlled" characteristics, those versatile binary systems enable also the synthesis of original materials such as high molecular weight poly(ethylene-*b*-methyl methacrylate) [2b,c] and poly(butadiene-*b*-glycidyl methacrylate) [2e] diblock copolymers. More, in many cases, such *in situ* alkylation of lanthanide precursors by dialkylmagnesium reagents provides a useful method for the formation of higher dialkylmagnesium

1381-1169/\$ – see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2007.03.072 derivatives, thanks to a rapid, reversible transfer of growing polymeryl chains from the lanthanide to magnesium centers [1d].

Recently, we reported on a new family of neutral allyl ansa-lanthanidocene complexes supported by the cyclopentadienyl/fluorenyl ligand [Cp-CMe₂-Flu]²⁻ (Fig. 1, 1) that are efficient single-component, single-site catalysts for the highly syndiospecific (>99%, rrrr) polymerization of styrene and its copolymerization with ethylene to produce unique sPS-PE materials [3]. In this contribution, we describe the performance of binary catalyst systems based on a related ansa-lanthanidocene chloro-precursor (2) and a dialkylmagnesium activator for the oligo/polymerization of styrene. To the best of our knowledge, soluble, highly syndiotactic oligostyrenes are reported for the first time. Diallylmagnesium has been used as co-activator, in order to compare the binary system versus the single-component allyl ansa-lanthanidocene catalyst as well as to prepare new functional highly syndiotactic oligostyrenes end-capped with terminal allyl groups.

^{*} Corresponding author.

E-mail address: jean-francois.carpentier@univ-rennes1.fr (J.-F. Carpentier).

Fig. 1. Lanthanidocene (pre)catalysts for syndiospecific styrene polymerization.

2. Results and discussion

The *ansa*-neodymocene $[(Cp-CMe_2-Flu)Nd(\mu-Cl)]_2$ (2) was prepared as reported previously by transmetallation between NdCl₃(THF)₂ and [Flu-CMe₂-Cp]Li₂ in diethylether [4]. This chloro precursor was activated for styrene polymerization by addition of a dialkylmagnesium reagent. Representative results obtained with di(*n*-butyl)magnesium and diallylmagnesium are summarized in Table 1.

The reactions were carried out in bulk styrene, using a minimal amount of toluene for preparing the catalyst, since early investigations have shown that this solvent and other aromatic hydrocarbons have a detrimental influence on catalytic activity. This is probably due to competitive coordination of such solvents onto the active species that blocks the subsequent attack of the π -system of incoming styrene monomer units [3a,b,5]. Also, the conversions were deliberately kept at low levels to produce relatively low molecular weights polymers $(M_n < 6000 \text{ g mol}^{-1})$ that do not precipitate during the reaction course. The oligomerizations were carried out at 60 °C, which allows a direct comparison between the binary Nd-Mg systems and parent single-component catalysts, e.g. [Cp-CMe₂-Flu]Nd(allyl)(THF) (1) [3a,b]. No significant differences in activity were observed upon using 1–100 equiv. of either $Mg(n-Bu)_2$ or $Mg(allyl)_2$ as activators $(1-8 \text{ kg PS mol Nd}^{-1} \text{ h}^{-1})$ and both binary systems appear ca. 2 orders of magnitude less active than the single-site complex 1 (1700 kg PS mol Nd⁻¹ h⁻¹). On the other hand, the similar performances of the $2/Mg(n-Bu)_2$ and $2/Mg(allyl)_2$ systems were unexpected because so far only discrete allyl complexes

Fig. 2. Phenyl *ipso*-carbon region of the ¹³C NMR spectrum (CDCl₃, 40 °C, 125 MHz) of oligostyrenes with assignments of heptads (entry 1) (data in square brackets are integral values).

such as **1** were found active for styrene polymerization under these conditions; i.e., no activity was detected with the yttrium carbyl complexes [Cp–CMe₂–Flu]Y(R)(THF) (R=CH₂SiMe₃, CH(SiMe₃)₂).

The oligostyrenes prepared from both $Mg(n-Bu)_2$ and $Mg(allyl)_2$ are highly syndiotactic as determined by ${}^{13}C$ NMR spectroscopy. As depicted in Fig. 2, the aromatic ipsocarbon region of the high-field ¹³C NMR spectra of the oligostyrenes shows only few signals assigned to one major *rrrrrr* (δ = 145.44 ppm) and minor *rrmrrr*, *rmrrrr* and *mrrrrr* heptads [6]. The relative intensities of those match well with the first-order Markovian (Bernoullian) statistics of the chain-end stereocontrol, giving a probability of racemic linkage between styrene units P_r of 0.93–0.94 [7]. This observation indicates that the binary combinations 1/MgR₂ actually generate catalytic species that act similarly to the single-component allyl complex 1, in particular with the same syndiospecificity. It argues against other contributions to the production of oligostyrenes, e.g. radical routes [2] which would lead to atactic materials. Remarkably, the oligostyrenes prepared in this work have good solubility in chloroform, THF and toluene, despite their high syndiotacticity.

Entry	MgR_2	[Mg]/[Nd]	[St]/[Nd]	PSt (%)	$M_{\rm n}{}^{\rm b}$	$M_{\rm w}/M_{\rm n}^{\rm b}$	Chains/Nd ^c
1	MgBu ₂	1	830	5	6500	1.5	0.67
2	MgBu ₂	14	810	10	4400	1.4	1.9
3	MgBu ₂	38	690	12	2700	1.3	3.2
4	MgBu ₂	54	630	12	2600	1.2	3.0
5	MgBu ₂	144	660	17	3000	1.2	3.9
6	Mg(allyl) ₂	1	800	2	4400	2.8	0.38
7	Mg(allyl) ₂	13	750	8	3300	1.3	1.9
8	Mg(allyl) ₂	36	670	6	2400	2.4	1.7
9	Mg(allyl) ₂	62	730	14	2600	1.2	4.0
10	Mg(allyl) ₂	154	940	6	1600	1.2	3.7
	- · ·						

 $^a\,$ Reactions conducted for 1 h at 60 $^\circ C$ using 10–60 μmol of Nd in neat styrene.

^b Determined by GPC in THF at 20 °C using polystyrene standards.

^c Number of polymer chains per Nd as determined from the relation: $conv \times ([St]/[Nd]) \times 104/M_n$.

Download English Version:

https://daneshyari.com/en/article/67877

Download Persian Version:

https://daneshyari.com/article/67877

Daneshyari.com