ELSEVIER

Contents lists available at ScienceDirect

### **Bioresource Technology**

journal homepage: www.elsevier.com/locate/biortech



# Characterization and optimization of cathodic conditions for $H_2O_2$ synthesis in microbial electrochemical cells



Junyoung Sim<sup>a</sup>, Junyeong An<sup>a</sup>, Elsayed Elbeshbishy<sup>a</sup>, Hodon Ryu<sup>b</sup>, Hyung-Sool Lee<sup>a,\*</sup>

- <sup>a</sup> Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada
- b National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA

#### HIGHLIGHTS

- H<sub>2</sub>O<sub>2</sub> conversion efficiency increased by 65% using O<sub>2</sub> diffusion.
- The maximum H<sub>2</sub>O<sub>2</sub> production rate was 141 mg H<sub>2</sub>O<sub>2</sub>/L-h.
- O<sub>2</sub> diffusion to the cathode would be rate-limiting for H<sub>2</sub>O<sub>2</sub> production.

#### ARTICLE INFO

Article history: Received 20 April 2015 Received in revised form 16 June 2015 Accepted 17 June 2015 Available online 24 June 2015

Keywords:
Hydrogen peroxide
Cathode potential
Gas diffusion
Microbial electrochemical cell
Microbial fuel cell

#### ABSTRACT

Cathode potential and  $O_2$  supply methods were investigated to improve  $H_2O_2$  synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous  $O_2$  for the cathode significantly improved current density, but  $H_2O_2$  conversion efficiency was negligible at 0.3–12%. Current density decreased for passive  $O_2$  diffusion to the cathode, but  $H_2O_2$  conversion efficiency increased by 65%. An MEC equipped with a gas diffusion cathode was operated with acetate medium and domestic wastewater, which presented relatively high  $H_2O_2$  conversion efficiency from 36% to 47%, although cathode overpotential was fluctuated. Due to different current densities, the maximum  $H_2O_2$  production rate was 141 mg  $H_2O_2/L$ -h in the MEC fed with acetate medium, but it became low at 6 mg  $H_2O_2/L$ -h in the MEC fed with the wastewater. Our study clearly indicates that improving anodic current density and mitigating membrane fouling would be key parameters for large-scale  $H_2O_2$ -MECs.

© 2015 Elsevier Ltd. All rights reserved.

#### 1. Introduction

 $\rm H_2O_2$  is a powerful oxidant that can be used for advanced oxidation, odor control, sludge pre-treatment, and membrane cleaning (Eskicioglu et al., 2008; Jo et al., 2011; Hijnen et al., 2012).  $\rm H_2O_2$ , however, is not cheap, which limits its wide application to water and wastewater treatment. High concentration of  $\rm H_2O_2$  over 50% has been typically used in field, and hence the transport and storage of concentrated  $\rm H_2O_2$  is another limitation for the  $\rm H_2O_2$  application.

Microbial electrochemical cells (MECs), that include microbial fuel cells and microbial electrolysis cells, are able to produce  $H_2O_2$  from organic wastewater by using two electrons reduction of  $O_2$  into  $H_2O_2$  on the cathode in MECs (Rozendal et al., 2009), which can address the existing challenges of  $H_2O_2$  costs and

handling in sustainable manners. Several works proved H<sub>2</sub>O<sub>2</sub> synthesis using MECs (Rozendal et al., 2009; Fu et al., 2010; Chen et al., 2014; Arends et al., 2014; Modin and Fukushi, 2013), but H<sub>2</sub>O<sub>2</sub> production is not consistent. Different cathode conditions (e.g., cathode potential or O<sub>2</sub> supply method) seem to affect H<sub>2</sub>O<sub>2</sub> yield and production rate in previous works. Rozendal et al. (2009) reported relatively high concentration of H<sub>2</sub>O<sub>2</sub> close to 1300 mg/L at applied voltage 0.5 V (the conversion efficiency from coulombs to H<sub>2</sub>O<sub>2</sub> 84%); the cathode potential in this work would be close to -0.7 V (vs. SCE). Arends et al. (2014) also reported high H<sub>2</sub>O<sub>2</sub> concentration of 26,000 mg/L at cathode potential fixed at -0.23 V (vs. Ag/AgCl) (H<sub>2</sub>O<sub>2</sub> conversion 40%). In comparison, other studies have reported very low H<sub>2</sub>O<sub>2</sub> concentration, ranging from 79 to 196 mg/L (H<sub>2</sub>O<sub>2</sub> conversion 69–70%) in MECs in which cathode potential was -0.25-0.3 V (vs. SCE) (Fu et al., 2010; Chen et al., 2014). Current density would mainly account for H<sub>2</sub>O<sub>2</sub> concentration, but H<sub>2</sub>O<sub>2</sub> conversion efficiency (from coulombs to H<sub>2</sub>O<sub>2</sub>) can also affect H<sub>2</sub>O<sub>2</sub> concentration. In fact, H<sub>2</sub>O<sub>2</sub> is not stable in a cathode chamber of MECs. H<sub>2</sub>O<sub>2</sub> decomposition

<sup>\*</sup> Corresponding author. Tel.: +1 519 888 4567x31095; fax: +1 519 888 4349. E-mail address: hyungsool@uwaterloo.ca (H.-S. Lee).

to O<sub>2</sub> and H<sub>2</sub>O in liquid phase can decrease H<sub>2</sub>O<sub>2</sub> yield (Choudhary and Gaikwad, 2003). At the same time, the H<sub>2</sub>O<sub>2</sub> reduction to H<sub>2</sub>O on the cathode, that is thermodynamically more favorable than O<sub>2</sub> reduction to  $H_2O_2$  on the cathode, can reduce  $H_2O_2$  yield in MECs. The standard potential ( $E^{\circ}$ ) for  $H_2O_2$  reduction to  $H_2O$  is 1.76 V vs. SHE, while  $E^{\circ}$  for  $O_2$  reduction to  $H_2O_2$  is 0.7 V.  $H_2O_2$  yield will be smaller as current density increases in MECs due to cathode polarization that can more drive H<sub>2</sub>O<sub>2</sub> reduction to H<sub>2</sub>O on the cathode (Fu et al., 2010; Song and Zhang, 2008). Unfortunately, cathode polarization seems essential to improve H<sub>2</sub>O<sub>2</sub> formation kinetics for engineering H<sub>2</sub>O<sub>2</sub>-MECs. In the mode of microbial fuel cells, H<sub>2</sub>O<sub>2</sub> production rate is too small (Rozendal et al., 2009; Fu et al., 2010; Chen et al., 2014) so that the application of H<sub>2</sub>O<sub>2</sub>-MECs to water and wastewater treatment will be seriously limited. Several works provided external power for MECs to improve H<sub>2</sub>O<sub>2</sub> production rate, and showed the improvement of H<sub>2</sub>O<sub>2</sub> production rate by 54-79 mg H<sub>2</sub>O<sub>2</sub>/L-h (Rozendal et al., 2009; Arends et al., 2014), which is 5–14 times faster than the  $H_2O_2$  rate in microbial fuel cell mode (6.6-10 mg H<sub>2</sub>O<sub>2</sub>/L-h) (Fu et al., 2010; Chen et al., 2014). For the success of H<sub>2</sub>O<sub>2</sub>-MECs, cathode potential should be optimized to meet fast kinetics and high yield for H<sub>2</sub>O<sub>2</sub>, but there is limited information on the relationship between cathode potential, and H<sub>2</sub>O<sub>2</sub> kinetics and yield.

In addition to cathode potential conditions, O<sub>2</sub> supply methods (the supply of aqueous  $O_2$  vs.  $O_2$  gas to the cathode) should be also rectified for successful application of H<sub>2</sub>O<sub>2</sub>-MECs. Passive O<sub>2</sub> diffusion from air to gas diffusion cathode can save operating costs substantially, but the mass transport of O2 to the cathode would be limited under passive O2 diffusion conditions, especially for cathode-polarized conditions leading to high current density. For instance, Rozendal et al. (2009) reported high H<sub>2</sub>O<sub>2</sub> production rate of 79 mg H<sub>2</sub>O<sub>2</sub>/L-h using passive diffusion of O<sub>2</sub> gas to a cathode, but other works using O2 gas diffusion showed H2O2 production rate as low as 6 mg H<sub>2</sub>O<sub>2</sub>/L-h (Chen et al., 2014; Modin and Fukushi, 2013). Sluggish kinetics on the anode (like kinetically poor anode-respiring bacteria) or large ohmic resistances can lower current density and H<sub>2</sub>O<sub>2</sub> formation rate, but mass transport limitation for O<sub>2</sub> to the cathode cannot be ruled out for low H<sub>2</sub>O<sub>2</sub> production rate in MECs utilizing passive O<sub>2</sub> diffusion. For instance, Arends et al. (2014) using aqueous O2 as an oxidant to the cathode recently reported 54 mg H<sub>2</sub>O<sub>2</sub>/L-h, which is much faster than H<sub>2</sub>O<sub>2</sub> production rate in recent studies using passive O<sub>2</sub> diffusion to the cathode (Chen et al., 2014; Modin and Fukushi, 2013), but less than the rate from the literature (Rozendal et al., 2009). Despite the significance of O<sub>2</sub> supply methods for commercialization of H<sub>2</sub>O<sub>2</sub>-MECs, there are no studies of comparing aqueous and gaseous  $O_2$  for  $H_2O_2$  synthesis.

In this work, cathode potential was optimized for  $H_2O_2$  production rate and yield with electrochemical cells using aqueous  $O_2$  as electron acceptor to cathodes. Then,  $O_2$  supply methods (passive  $O_2$  gas diffusion vs. direct aeration to catholytes) were compared at fixed cathode potential. Finally, performance of a  $H_2O_2$ -MEC using selected cathode potential and  $O_2$  provision means was assessed using acetate medium and domestic wastewater as substrate.

#### 2. Methods

#### 2.1. Reactors configuration

Two dual-chamber electrochemical cells were constructed in the engineering machine shop at the University of Waterloo for experiments: cell #1 and cell #2 were exploited in abiotic and biotic experiments, respectively. The electrochemical cell #1 consists of an anode and a cathode chamber, which are partitioned by a membrane. Both chambers are made from cylindrical plexiglass

and the working volumes of the anode and the cathode are 35 and 25 mL, respectively. A graphite plate (Isomolded Graphite Plate 203101, Fuel Cell Earth) was selected as the anode. For the cathode, a graphite cathode (GC) (Isomolded Graphite Plate 203101, Fuel Cell Earth, USA) and a gas diffusion cathode (GDC) (GDS2230 carbon fiber, Fuel Cell Earth, USA) were compared to optimize  $\rm H_2O_2$  production. Both anode and cathode had the projected surface area of 17.4 cm². Cation exchange membrane (CEM) (CMI-7000, Membranes International Inc., USA) with the projected surface area of 17.4 cm² was used as the membrane. An Ag/AgCl reference electrode (MF-2052, Bioanalytical System Inc. (BASi, USA) was located  $\sim$ 0.5 cm apart from the cathode to control cathode potential ( $E_{\rm cathode}$ ) using a potentiostat (BioLogic, VSP, Gamble Technologies, Canada); here, we reported  $E_{\rm cathode}$  vs. Ag/AgCl reference electrode.

The cell #2 was operated as microbial electrochemical cell (MEC) fabricated with cylindrical plexiglass. The MEC comprises an anode and a cathode chamber whose working volumes are 289 and 70 mL, respectively. High density carbon fibers (2293-A, 24A Carbon Fiber, fiber Glast Development Corp., Ohio, USA) connected with a stainless steel frame (current collector) was used as an anode module with approximate surface area of 4480 cm<sup>2</sup> (An and Lee, 2013; Dhar and Lee, 2014). The anode module was designed to improve the biofilm density of anode-respiring bacteria (ARB) per membrane surface area that determines MEC footprint in dual-chamber configuration. The carbon fibers were pretreated with nitric acid (1 N), acetone (1 N), and ethanol (1 N) prior to use (Lee et al., 2009). The GDC (GD2230, Fuel Cell Earth, USA) with the projected area of 33 cm<sup>2</sup> was used as the cathode in the MEC in which  $O_2$  in the air passively diffuses to the cathode. The distance between the anode and the cathode was 2 cm. The CEM (CMI-7000, Membranes International Inc., USA) with the surface area of 33 cm<sup>2</sup> was employed as the membrane. An Ag/AgCl reference electrode (MF-2052, Bioanalytical System Inc.) was placed  $\sim$ 0.5 cm apart from the anode module to fix anode potential  $(E_{\text{anode}})$  at -0.4 V using the potentiostat during tests.

#### 2.2. Inoculation and operation

The electrochemical cell #1 was operated for abiotic experiments (no microorganisms on the anode) in which the effect of various parameters ( $E_{cathode}$ , cathode material, and aeration method) on H<sub>2</sub>O<sub>2</sub> production was investigated. The anode and the cathode chambers in cell #1 were filled with tap water and the cell #1 was operated in batch mode. For the first set of the abiotic experiments, the GC and the GDC for H<sub>2</sub>O<sub>2</sub> production were compared under identical  $E_{cathode}$  and aeration method. The cathode chamber was aerated with an air blower (DW-12, Tetron Product, Taiwan) at a flow rate of 860 mL/min, and the  $E_{cathode}$ was changed at -0.4, -0.6, and -0.8 V. In the second set of the abiotic experiments in which the GDC only was used as the cathode, oxygen molecules passively diffused to the GDC, and  $E_{cathode}$  was varied at -0.4, -0.6, and -0.8 V. For each experimental run in the abiotic experiments, cell #1 was operated for 180 min, and 0.5 mL sample was collected from the cathode chamber every 30 min for H<sub>2</sub>O<sub>2</sub> quantification. Current, electrode potential, and cell voltage were monitored using EC-Lab software in a personal computer connected with the potentiostat.

The  $H_2O_2$ -generating MEC was inoculated with 10 mL of the effluent from an existing MEC that had been operated with acetate medium (25 mM acetate medium) for over 6 months. The composition of the medium was (per L of 18.2 M $\Omega$  cm MilliQ water) 2050 mg/L CH $_3$ COONa, 2274 mg KH $_2$ PO $_4$ , 11,678 mg Na $_2$ HPO $_4$ ·12H $_2$ O, 37 mg NH $_4$ Cl, 25 mg MgCl $_2$ ·6H $_2$ O, 6 mg MnCl $_2$ ·4H $_2$ O, 0.1 mg CuSO $_4$ ·5H $_2$ O, 0.1 mg Na $_2$ WO $_4$ ·2H $_2$ O, 0.1 mg NaHSeO $_3$ , 0.01 mg CaCl $_2$ ·2H $_2$ O, 0.5 mg ZnCl $_2$ , 0.1 mg AlK(SO $_4$ ) $_2$ ,

#### Download English Version:

## https://daneshyari.com/en/article/679507

Download Persian Version:

https://daneshyari.com/article/679507

Daneshyari.com