
Please cite this article in press as: L. Benton, et al., Designing for learningmathematics throughprogramming: A case study of pupils engagingwith place value, International
Journal of Child-Computer Interaction (2018), https://doi.org/10.1016/j.ijcci.2017.12.004.

International Journal of Child-Computer Interaction () –

Contents lists available at ScienceDirect

International Journal of Child-Computer Interaction

journal homepage: www.elsevier.com/locate/ijcci

Designing for learning mathematics through programming: A case
study of pupils engaging with place value
Laura Benton a,*, Piers Saunders a, Ivan Kalas a,b, Celia Hoyles a, Richard Noss a

a UCL Knowledge Lab, UCL Institute of Education, University College London, 23-29 Emerald Street, London, UK
b Department of Informatics Education, Comenius University, Bratislava, Slovakia

a r t i c l e i n f o

Article history:
Received 7 February 2017
Received in revised form 28 September
2017
Accepted 20 December 2017
Available online xxxx

Keywords:
Children’s programming
Computing education
Mathematics
Scratch
Broadcasting
Place value

a b s t r a c t

This paper focuses on a major part of a two-year intervention, ScratchMaths (SM), which seeks to exploit
programming for the learning of mathematics. The SM hypothesis is that given the right design of
curriculum, pedagogy and digital tools, pupils can engage with and express important mathematical
ideas through computer programming. We describe the overall design of SM and as an illustration
of the approach, we elaborate a more detailed description of the specific SM activities that seek to
harness the programming concept of ‘objects communicating with one another’ for the exploration of
the mathematical concept of place value through a syntonic approach to learning. We report a case
study of how these activities were implemented in two primary classes. Our findings constitute a kind of
existence theorem: thatwith carefully designed and sequenced learning activities and appropriate teacher
support, this approach can allow pupils to engage with difficult mathematical ideas in new, meaningful
and generalisable ways. We also point to the challenges which emerged through this process in ensuring
pupils encounter these mathematical ideas.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

There was a body of research undertaken during the 1980s
and 90s that explored the potential beneficial impact of learning
to program on pupils’ mathematical thinking [1]. Researchers de-
signed mathematical activities that exploited the affordances of a
specific programming environment to explore and express a range
of mathematical ideas through the programming language. Many
of these researchers were inspired by the work of Seymour Papert,
and builtmicroworlds in the Logoprogramming language [1]. Their
research was guided by a constructionist approach to learning,
which was viewed as a process of building knowledge structures
that happensmost effectively when the learner is actively engaged
in ‘‘constructing a public entity’’ [2]. The approach endeavours to
ensure that the learning activities embed ‘‘powerful ideas’’ [3] —
ideas that are potent in their use (both epistemologically and
personally), in their connections with other disciplines and their
fit with a learner’s personal intuitive knowledge [4].

Researchers also identified challenges experienced in learning
to program, for example Lewis [5] and Resnick et al. [6] pointed
to limitations of the programming environment, such as attention

* Corresponding author.
E-mail addresses: l.benton@ucl.ac.uk (L. Benton), piers.saunders@ucl.ac.uk

(P. Saunders), i.kalas@ucl.ac.uk, kalas@fmph.uniba.sk (I. Kalas), c.hoyles@ucl.ac.uk
(C. Hoyles), r.noss@ucl.ac.uk (R. Noss).

on mastering the programming syntax rather than the semantic
meaning of the code as well as the specific skills/knowledge re-
quired by teachers to provide the necessary guidance or challenge
to novice learners. New blocks-based programming languages,
such as Scratch (derived from Logo), help to overcome difficulties
in syntax, thus making programming more accessible to a wider
range of learners and teachers [7]. These languages are designed
to make some complex concepts more accessible, with visual cues
such as colour, shape and constrained nesting to indicate usage,
flow and scope [5,8].

The research reported here is based on the ScratchMaths (SM)
project, which set out to exploit the resurgence of the teaching of
programming (now commonly referred to as ‘coding’) in primary
schools in England along with the programming functionalities for
younger learners that have become available. Several curriculum
designers have recognised the potential that Scratch offers the
learning of mathematics, largely with a focus on geometry, but
also exploring positive/negative numbers, building arithmetic and
algebraic expressions, using the in-built coordinate system as well
as developing mathematical thinking skills and positive attitudes
towardsmathematics [9–14]. SM aimed tomake problematic parts
of the mathematics curriculum personally meaningful, enabling
more pupils to gain a deeper understanding of mathematical ideas
through the programming activities used to express them. A cen-
tral design focus was to exploit syntonic learning opportunities,
that is to support learners in considering a problem from the

https://doi.org/10.1016/j.ijcci.2017.12.004
2212-8689/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ijcci.2017.12.004
http://www.elsevier.com/locate/ijcci
http://www.elsevier.com/locate/ijcci
mailto:l.benton@ucl.ac.uk
mailto:piers.saunders@ucl.ac.uk
mailto:i.kalas@ucl.ac.uk
mailto:kalas@fmph.uniba.sk
mailto:c.hoyles@ucl.ac.uk
mailto:r.noss@ucl.ac.uk
https://doi.org/10.1016/j.ijcci.2017.12.004

Please cite this article in press as: L. Benton, et al., Designing for learningmathematics throughprogramming: A case study of pupils engagingwith place value, International
Journal of Child-Computer Interaction (2018), https://doi.org/10.1016/j.ijcci.2017.12.004.

2 L. Benton et al. / International Journal of Child-Computer Interaction () –

Table 1
Ten tools for teaching for transfer (based on [26,27]) and examples of these techniques found within the existing research on teaching programming and mathematics.

Hugging techniques Bridging techniques

1. Setting expectations: Indicating how to directly apply learning content in
transfer context (e.g. identifying difficulties of fractions and discussing how
they could be represented within Logo [28])

6. Anticipating applications: Discussing potential transfer contexts of learning
context (e.g. setting a task to program a mathematics game in Scratch to
facilitate number understanding of younger pupils [29])

2.Matching: Adjusting learning activity to reflect transfer context (e.g.
identifying squares in environment and then using Logo programming to draw
squares [3])

7. Generalising concepts: Identifying generalisable aspects (e.g. principles,
rules, ideas) of learning content (e.g. sequencing questions to encourage
generalisation of algebraic concepts encountered in Logo [30])

3. Simulating: Approximating learning content to transfer context through role
play, acting out etc. (e.g. encouraging a pupil to ‘‘play Turtle’’ to imagine how
to draw a square in Logo [3])

8. Using analogies: Representing the learning content through a different topic
using an analogy

4.Modelling: Showing or demonstrating use of learning content within
transfer context (e.g. providing examples of angles with rotation to support
drawing of shapes within Logo microworld [31])

9. Parallel problem-solving: Exploring parallels and differences in applying
learning content within two different problem contexts

5. Problem-based learning: Requiring the use of learning content to solve a
problem within the transfer context (e.g. learning problem-solving skills
through making games [32])

10.Metacognitive reflection: Promoting planning, monitoring and on their own
thinking (e.g. design debriefings to encourage reflection on connections
between game design choices and maths learning [14])

perspective of the programmable object, which ‘‘represents a ‘res-
onance’ between external forms and concepts and what people
know about themselves’’ [3,15]. The concept of syntonicity has
typically been used when exploring geometric ideas through pro-
gramming [3]. We sought to extend its scope to other areas of
mathematics and through a design research process aimed to
identify concepts in the primary mathematics curriculum that we
hypothesised would benefit from this approach.

The Scratch environment allows multiple objects (called
sprites) to be programmed so that they act in parallel by pro-
gramming interactions between them through a kind of message-
passing, known as ‘broadcasting’.1 In this paperwe explore how to
exploit this programming functionality of objects communicating
with one another as an alternative, meaningful and generalisable
way for pupils to engage with the mathematical concept of place
value — where the places ‘interact’, allowing pupils to play with
the ideas directly rather than simply learning about them.We first
present the background to the SM project and the overall design of
the SM curriculum, before turning to the case study research that
forms the empirical core of the paper.

2. Background

Learning something in one context, such as programming, and
subsequently utilising this skill or knowledge in another context
is commonly referred to as ‘transfer’ (see for example [16,17]).
The traditional view of transfer is that learning x brings about an
ability to understand y where, in some real sense, x and y are
epistemologically different, an approach that has been subjected
to critical scrutiny (e.g. [18]).

The early Logo experiments constituted a widespread attempt
to explore the impact of computer programming on children’s
mathematical understanding [1,19]. Clements and Sarama [20]
propose that programming in Logo could ‘‘serve as a transitional
device between concrete experiences and abstract mathematics’’.
However, there were conflicting findings, which may in part be
explained by the different approaches to and reasons for teaching
programming, as well as to the differing levels of facilitation of
the connection-making process between the different domains,
usually offered by a teacher [see 21, Ch. 7]. In fact Delclos et al. [22]
state that ‘‘no content, standing alone, can spontaneously produce
generalisable learning’’ and highlight the important role of the
teacher inmediating the learning through programming languages
and supporting transfer.

1 The key attributes ofwhich are adopted frommore generalmechanismof event
handling (in particular the mechanics of user-defined event handling).

Some researchers have identified teaching techniques that fa-
cilitate transfer, such as hugging and bridging, distinguished by
Salomon and Perkins [23]. Hugging seeks to make the teaching
in the new domain as similar as possible to the original con-
text [23–25]. Bridging by contrast promotes facilitating abstrac-
tion and connection-making processes by, for example, making
analogies or teaching problem-solving strategies. Salomon and
Perkins [23] suggest that using a combination of these techniques
maximises potential transfer opportunities. Table 1 summarises a
set of hugging and bridging techniques, based on the mechanisms
for transfer proposed by Salomon and Perkins, and expanded by
Fogarty et al. [26]. It lists ‘ten tools for teaching for transfer’ adapted
specifically for mathematics by Jones et al. [27], and how these
techniques have been usedwithin programming andmathematics.

Wedonot seemathematical learning as a spin-off from learning
to program, thereforewe have consideredwhether children taught
to program in Scratch can express some of their mathematical
thinking in programming with the support of carefully designed
materials and teachers who have been ‘trained’ in how to use
Scratch to learnmathematics. Within mathematics there is often a
disconnect between concept and procedure,with a dominant focus
on the latter, despite overwhelming consensus thatwhat is needed
is a judicious mix of the two [33]. The difficulty for the pupils is to
‘keep hold’ of what the symbols mean, and simultaneously to let
go of the meaning when manipulation of the symbols is a realistic
objective.2 A pervasive example of this is in the way children are
introduced to the algorithms of arithmetic, which is the focus of
our investigation here.

3. ScratchMaths curriculum design

In the SM project a two-year curriculum was designed for the
9–11 primary age group (Years 5 and 6), aligned to the English
National Computing and Mathematics Primary Curriculums [34],
and promoting the teaching of carefully selected core ideas of
computer programming alongside specificmathematical concepts.
The content was divided into six modules, three modules to be
taught per year (see Table 2). The project team followed a design
research process to develop the curriculum content and pedagogic
approach (termed the 5Es framework3), trialling the activities
in a number of ‘design schools’ and iteratively redesigning based
on the outcomes of these trials (for further details see [35,36]).

2 For example, a Logo program such as REPEAT 3 [FD 50 RT 120] contains within
itself some information about the number of symmetries, and an application of a
very powerful theorem (the Total Turtle Trip theorem). In short, the symbols bring
alive aspects of the structure of an equilateral triangle.
3 Which includes the constructs Explore, Explain, Exchange, Envisage and bridgE.

Download English Version:

https://daneshyari.com/en/article/6795259

Download Persian Version:

https://daneshyari.com/article/6795259

Daneshyari.com

https://daneshyari.com/en/article/6795259
https://daneshyari.com/article/6795259
https://daneshyari.com

