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This tutorial introduces the reader to Gaussian process regression as an expressive tool to model, actively
explore and exploit unknown functions. Gaussian process regression is a powerful, non-parametric
Bayesian approach towards regression problems that can be utilized in exploration and exploitation
scenarios. This tutorial aims to provide an accessible introduction to these techniques. We will intro-
duce Gaussian processes which generate distributions over functions used for Bayesian non-parametric
regression, and demonstrate their use in applications and didactic examples including simple regression
problems, a demonstration of kernel-encoded prior assumptions and compositions, a pure exploration
scenario within an optimal design framework, and a bandit-like exploration-exploitation scenario where
the goal is to recommend movies. Beyond that, we describe a situation modelling risk-averse exploration
in which an additional constraint (not to sample below a certain threshold) needs to be accounted
for. Lastly, we summarize recent psychological experiments utilizing Gaussian processes. Software and

literature pointers are also provided.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Whether we try to find a function that accurately describes
participants’ behaviour (Cavagnaro, Aranovich, McClure, Pitt, &
Myung, 2014), estimate parameters of psychological models (Wet-
zels, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2010), try to
sequentially optimize the stimuli used in an experiment (Myung
& Pitt, 2009), or model how participants learn to interact with their
environment (Meder & Nelson, 2012), many problems require us
to assess unknown functions that map inputs to outputs. Often,
the shape of the underlying function is unknown, the function
might be hard to evaluate analytically, or other requirements
such as design costs might complicate the process of information
acquisition. In these situations, Gaussian process regression can
serve as a useful tool for performing inference both passively (for
example, describing a given data set as best as possible, allowing
one to also predict future data) as well as actively (for example,
learning while choosing input points to produce the highest pos-
sible outputs, cf Williams & Rasmussen, 2006). Gaussian process
regression is a non-parametric Bayesian approach (Gershman &
Blei, 2012) towards regression problems. It can capture a wide
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variety of relations between inputs and outputs by utilizing a
theoretically infinite number of parameters and letting the data
determine the level of complexity through the means of Bayesian
inference (Williams, 1998).

This tutorial will introduce Gaussian process regression as an
approach towards describing, and actively learning and optimizing
unknown functions. It is intended to be accessible to a general
readership and focuses on practical examples and high-level expla-
nations. It consists of six main parts: The first part will introduce
the mathematical underpinnings of Gaussian process regression.
The second part will show how different kernels can encode prior
assumptions about the underlying function. Next, we will show
how Gaussian processes can be used in problems of optimal ex-
perimental design, when the goal is pure exploration, i.e., to learn
a function as well as possible. The fourth part will describe how
Gaussian process-based Bayesian optimization (here defined as
an exploration—exploitation problem) works. In the fifth part, we
will talk about ways of utilizing Gaussian process exploration-
exploitation methods in situations with additional requirements
and show one example of “safe exploration”, where the goal is to
avoid outputs below a certain threshold. We will conclude by sum-
marizing current research that treats Gaussian process regression
as a psychological model to assess human function learning.

As a tutorial like this can never be fully comprehensive, we
have tried to provide detailed references and software pointers
whenever possible.
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Table 1
Overview of different Gaussian process methods (including their example applications) introduced in this tutorial.
Method Purpose Approach Example
Modelling Simple regression passive Mouse trajectories
Compositional modelling Find patterns within data passive Response time patterns
Exploration Learn function as quickly as possible active Learn simulated functions
Exploration-exploitation Optimize function active Movie recommendation
Safe exploration Optimize function while staying above a threshold active Cautious stimulus optimization
2. Gaussian processes — distributions over functions Table 2
Observations for the regression example. Inputs x, and corresponding outputs y,
2.1. Motivation observed at 6 different timest =1,...,6.
t Xt Yt
Let f denote an (unknown) function which maps inputs x to 1 0.9 0.1
outputs y: f : X — Y. Throughout the following examples, we 2 3.8 12
will use Gaussian process regression to accomplish either one of 2 (553 ﬂ
three different goals: 5 75 15
By modelling a function f we mean mathematically represent- 6 9.6 12

ing the relation between inputs and outputs. An accurate model of
f allows us to predict the output for many possible input values.
In practice, this means collecting observations of both inputs and
outputs and on the basis of this generating accurate predictions
for newly observed points. As an example of this, we will use
Gaussian process regression to model mouse trajectories in a cat-
egorization experiment. Additionally, we will use compositional
Gaussian process regression to decompose temporal dependencies
in participants’ reaction times into interesting patterns.

By exploring a function we mean to actively choose the input
points for which to observe the outputs in order to accurately
model the function. In pure exploration problems, the only objec-
tive is to explore the underlying function well in order to learn
about it as quickly and accurately as possible. This set-up is closely
related to optimal experimental design scenarios as it equates to
adaptively selecting the input points based on what is already
known about the function and where knowledge can be improved.
In a simple simulation experiment, we will show how exploration
based on Gaussian process regression can recover underlying re-
sponse functions faster than other commonly used techniques.

In exploration-exploitation problems, the outcomes of chosen
inputs are accrued over time. The objective is to find inputs
that produce the highest outputs in order to maximize the total
reward accrued within a particular period of time. Exploration
solely serves the purpose of doing so most effectively. This set-
up is closely related to optimization problems as the goal is to
find the maximum of the function as efficiently as possible. It is
called exploration-exploitation as scenarios where the output of
the underlying function has to be optimized require us to both
sample uncertain areas in order to gain more knowledge about the
function (exploration) as well as sampling input points that are
likely to generate high outputs given the current knowledge of the
function (exploitation). As an example, we will show how Gaussian
process-based exploration-exploitation quickly finds highly rated
items in a movie recommendation application. Moreover, we will
show how this method can be adapted to additional requirements
such as avoiding outputs below a given threshold.

Both exploration and exploration-exploitation tasks require
choosing useful inputs. Doing so requires two ingredients:

1. A model used to learn about the function f.
2. A method to select inputs based on the current knowledge
of f.

As a valid model of the underlying function f is crucial for all three
goals of modelling, exploration, and exploitation, we will first focus
on Gaussian processes as a powerful and expressive method to
model unknown functions. We will focus on applying this tool
to exploration-exploitation scenarios afterwards. Table 1 provides
an overview of the different Gaussian process methods (and their
example applications) introduced in this tutorial.

2.2. Modelling functions: the weight space view

Let us start by considering a standard approach to model func-
tions: linear regression (here approached from a Bayesian view-
point). Imagine we have collected the observations shown in Ta-
ble 2 and that we want to predict the value of y for a new input
point x, = 3. In linear regression (see Fig. 1), we assume that the
outputs are a linear function of the inputs with additional noise:

Ve =f(x) + €

= o + Bix + €,
where the noise term ¢; follows a normal distribution
e ~ N(0, 07?)

with mean 0 and variance o?. As this will be useful later, we can
also write this in matrix algebra as

T
yt=xtw+ei

defining the vectors

[ -[3)

To predict the output for x,, we need to estimate the weights from
the previous observations

1 0.9 0.1

1 38 1.2
X; = . e Ve = :

1 9.6 1.2

Adopting a Bayesian framework, we do so through the posterior
distribution over the weights. If we use a Gaussian prior over the
weights p(w) = A(0, X)and the Gaussian likelihood p(y; | X;, w) =
N(X/w, 021), then this posterior distribution is

p(WIye, X¢) o< p(ye X, w)p(w)
1
=N <§A;1X[yt, A;1> (1)

€
where A, = ¥~ + 02X, X/ (see also Williams, 1998).

As inference is performed over the weights (i.e., we try to find
the best estimate for the B-weights given the data), this is also
sometimes referred to as “the weight space view of regression”.
To predict the output y, at a new test point x,, we can average out
the error term and focus on the expected value which is provided
by the function f, predicting f, = y, — €, = f(X,). In the predictive
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