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h i g h l i g h t s

• Signed difference analysis is re-framed using the theory of oriented matroids.
• State-trace analysis is shown to be a special case of signed difference analysis.
• Additive conjoint measurement shown to be a special case of signed difference analysis.
• A method to fit models in the presence of measurement error is described.
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a b s t r a c t

Signed difference analysis (SDA), introduced by Dunn and James (2003), is used to derive testable
consequences from a psychological model in which each dependent variable is presumed to be a
monotonically increasing function of a linear or nonlinear combination of latent variables. SDA is based on
geometric properties of the combination of latent variables that are preserved under arbitrary monotonic
transformation and requires estimation neither of these variables nor of the monotonic functions. The
aim of the present paper is to connect SDA to the mathematical theory of oriented matroids. This serves to
situate SDA within an existing formalism, to clarify its conceptual foundation, and to solve outstanding
conjectures. We describe the theory of oriented matroids as it applies to SDA and derive tests for both
linear and nonlinear models. In addition, we show that state-trace analysis is a special case of SDA
which we extend to models such as additive conjoint measurement where each dependent variable is the
same unspecified monotonic function of a linear combination of latent variables. Lastly, we show how
measurement error can be accommodated based on themodel-fitting approach developed by Kalish et al.
(2016).

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Many psychological models can be characterized in terms of
functions ormappings between sets of independent, latent, andde-
pendent variables (Dunn & Kalish, 2018). In this characterization,
an input mapping maps independent variables to a set of theory-
dependent latent variables, and an output mapping maps the latent
variables to a set of dependent variables. Let y be a vector of the
values of n dependent variables, let x be a vector of the values ofm
latent variables, and w be a vector of the values of k independent
variables. Then we can write the input mapping as,

x = G(w),
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the output mapping as,

y = F (x),

and the full model as,

y = F ◦ G(w).

While y is in principle constrained by both F and G, in many cases,
the input mapping is unspecified and interest focuses on testing
whether a proposed output mapping can provide an adequate
characterization of data. LetY = {y1, . . . , yN}be a set of dependent
variable vectors observed under N experimental conditions. Let
P ⊆ Rm be the domain of x. Because x cannot bemeasured directly,
the experimenter is asking if Y ⊆ {F (x) : x ∈ P}. If theory gives
an algebraic form for F (e.g., by specifying that F is linear), then
it becomes a question of finding a set of latent variable vectors,
X = {x1, . . . , xN} such that Y ≈ F (X ). However, restriction to
an algebraic form is often not theoretically reasonable.
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Signed difference analysis (SDA) is concerned with models in
which the output mapping F has the form f ◦ g , where

• g : P → Rn is a structural mapping, which maps the set
of m latent variables to a set of n pre-dependent variables
that stand in a one-to-one relationship to the dependent
variables of interest.

• f : Rn
→ Rn is a monotonic measurement mapping. The

only assumption on f is that it has the form f (z1, . . . , zn) =

(f1(z1), . . . , fn(zn)), where each fi is monotonically increas-
ing. The monotonic measurement mapping maps each pre-
dependent variable to its corresponding dependent variable.

Models composed of structural and measurement mappings
have been proposed inmany fields, including judgment and choice
(Tversky & Russo, 1969), risky decisionmaking (Kahneman & Tver-
sky, 1979), intertemporal choice (Dai & Busemeyer, 2014), and psy-
chometric testing (Andrich, 1988). Signal detection theory (SDT)
also offers examples of this kind of model (Macmillan & Creelman,
2005) which we use to illustrate the distinction. In the most basic
SDT model, there are two dependent variables of interest; the
hit rate (HR) or the probability of reporting a signal when one is
present, and the false alarm rate (FAR) or the probability of report-
ing a signal when one is not present. Each dependent variable is
modeled as a function of two latent variables; discriminability, d′,
and a decision criterion, c . That is,

HR = f1(d′
− c)

FAR = f2(−c)
(1)

where f1 and f2 are cumulative distribution functions and therefore
monotonically increasing.

It is clear that Eq. (1) can be decomposed into a structural
mapping g , and a monotonic measurement mapping f . That is,

g :

{
HR∗

= d′
− c

FAR∗
= −c

where HR∗ and FAR∗ are pre-dependent latent variables corre-
sponding to the dependent variables, HR and FAR, respectively.
And,

f :

{
HR = f1(HR∗)
FAR = f2(FAR∗)

.

SDA tests predictions of a model which do not require estima-
tion of either the values of the latent variables or the form of the
monotonic measurement mapping. Instead, predictions are based
on geometric properties of the structural mapping that are invari-
ant under all possible monotonically increasing transformations. It
is in this sense that SDA tests for ‘structure under monotonicity’.

As we discuss in more detail in Section 3.4, SDA can also be
viewed as a generalization of state-trace analysis (STA), first intro-
duced by Bamber (1979). As in SDA, STA tests a model that can be
decomposed into a structural and measurement mapping where
each component of the structural mapping is a function of a single
latent variable (for further discussion, see Dunn & Kalish, 2018;
Dunn, Kalish, & Newell, 2014; Kalish, Dunn, Burdakov, & Sysoev,
2016; Loftus, Oberg, & Dillon, 2004; Newell & Dunn, 2008).

In their initial presentation of SDA, Dunn and James (2003)
derived the relevant model predictions from first principles. How-
ever, a simpler, clearer, and more productive derivation can be
obtained using the mathematical theory of oriented matroids. The
main aim of the present article is therefore to re-cast the theory
of SDA in terms of oriented matroids and, based on this approach,
to extend SDA in two directions that were discussed by Dunn and
James (2003)without clear resolution. The first is the case inwhich
two or more component functions of the measurement mapping
are identical. This is a feature of many models including those

derived from SDT as well as additive conjoint measurement (ACM)
(Krantz, Luce, Suppes, & Tversky, 1971; Luce & Tukey, 1964). The
second direction concerns the question of testing a model against
data that contain measurement error. We discuss this in light of
the procedure recently developed by Kalish et al. (2016) for STA.

The remainder of this article is divided into the following main
sections. In Section 2, we outline the aim of SDA in more precise
terms. In Section 3,we introduce the theory of orientedmatroids in
so far as it is relevant to SDA. In Section 4, we use orientedmatroids
to derive testable consequences for models with a linear structural
mapping. In Section 5, we generalize this to a class of nonlinear
models with ‘near linear’ structural mappings. In Section 6, we de-
rive additional testable consequences for linear structural models
in which some or all components of the measurement mapping
are identical (as in SDT and ACM). In Section 7, we discuss the
problem of testing a model in the presence of measurement error
and conclude our discussion in Section 8.

2. The aim of SDA

The aim of SDA is to provide a test of a psychological model in
which the output mapping consists of a structural mapping and an
unspecified but monotonically increasing measurement mapping.
Let y = (y1, . . . , yn)T be a vector of n dependent variables and
let x = (x1, . . . , xm)T be a vector of m latent variables. Let g =

(g1, . . . , gn) be a structural mapping and let f = (f1, . . . , fn) be
a monotonic measurement mapping in which each component
function, fi, is increasing in its argument. Then SDA tests a model
where,

y = f ◦ g(x). (2)

The logic of SDA rests on the fact that it is possible to iden-
tify properties of the structural mapping g that survive arbitrary
monotonic transformation. Specifically, the sign of the difference
between two vectors of dependent variables observed under dif-
ferent experimental conditions is givenby the sign of the difference
between two corresponding vectors of pre-dependent variables.
The set of such vectors, we show, is determined by geometric
properties of g . Therefore, once a model has been defined in terms
of its structural mapping, it can in principle be tested using SDA.

Formally, let Q ⊆ Rn and let f : Q → Rn be a multivariate
function of the form f (x1, . . . , xn) = (f1(x1), . . . , fn(xn)). We say f is
monotonically increasing (ormonotonic in short) if each component
function, fi, is strictly increasing in its argument. The sign of a vector
z = (z1, . . . , zn) ∈ Rn is the element of {0, +, −}

n whose ith
component is the sign of zi. The sign of a difference between two
vectors is called a signed difference vector. The key observation is:

Monotonicity Theorem (Dunn and James, 2003). Let P ⊆ Rm,
Q ⊆ Rn, g : P → Q be a function, and f : Q → Rn be a function.
Then if f is monotonically increasing then sign(f ◦ g(x)− f ◦ g(x̃)) =

sign(g(x) − g(x̃)) for all x, x̃ ∈ P.

We say that a sign vector X is observable under g if there exist
vectors, x, x̃ ∈ P , such that sign(g(x) − g(x̃)) = X . It follows
from the Monotonicity Theorem that if X is observable under g
it is also observable under f ◦ g for any monotonically increasing
measurementmapping, f . In Section 4wewill extend this theorem
to include a weakly monotonic measurement mapping in which
each component function is strictly non-decreasing.

By way of example, consider a model y = f ◦ g(x), for y =

[y1, y2], f monotonic and g(x) = (ax + c, bx + d), for constants,
a, b > 0, c , and d. Thus the image of the function g is a line with
positive slope. Without specifying f , all we can say about possible
values of y is that they should lie on a curve {y2 = h(y1)} which
is the graph of an increasing function h. Equivalently, any two
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