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h i g h l i g h t s

• Presents a new, exact method to analyze associative learning models.
• Explicit formulae for associative strengths are obtained by solving linear equations.
• The method applies to many models, including elemental and configural ones.
• New predictions are derived for summation and blocking experiments.
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a b s t r a c t

I introduce a simple mathematical method to calculate the associative strengths of stimuli in many
models of associative learning, without solving the models’ learning equations and without simulating
the learning process. The method applies to many models, including the Rescorla and Wagner (1972)
model, the replaced elements model of Brandon et al. (2000), and Pearce’s (1987) configural model. I
illustrate the method by calculating the predictions of these three models in summation and blocking
experiments, allowing for a degree of similarity between the training stimuli as well as for the effects of
contextual stimuli. The method clarifies the models’ predictions and suggests new empirical tests.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Theories of associative learning are formulated as equations
that describe how a single learning experience changes the as-
sociative strengths of stimuli. Focusing on single experiences en-
ables learning equations to display principles of learning clearly,
such as error correction or temporal discounting (Bouton, 2016;
Sutton & Barto, 1998). As a consequence, however, the equations
do not immediately reveal the long-term outcomes of learning.
To understand the latter, two quantitative methods are available:
formal solution and computer simulation. Formal solution pro-
vides a fuller picture of model behavior, but is technically more
challenging. Even when a solution exists, it may be too unwieldy
to enter general use, as it has been the case for the Rescorla and
Wagner (1972) model (Chiang, 1993; Widrow & Stearns, 1985;
Yamaguchi, 1999).

Here I introduce the ‘‘endpoint method’’, a straightforward an-
alytical method that requires neither solving nor simulating learn-
ing equations. Rather, the method calculates associative strengths
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at select times during an experiment, namely the endpoints of ex-
perimental phases. Associative strengths at phase endpoints do not
characterize learning models completely, yet are of great interest.
For example, the classic blocking design has two phases: in phase
one a stimulus A is reinforced; in phase two a compound of stimuli
A and B is reinforced in the sameway (Bouton, 2016; Kamin, 1969).
Models of blocking are primarily evaluated based on the predicted
associative strength of B at the end of phase two (Rescorla &
Wagner, 1972), which the endpoint method can calculate. In this
paper, I use themethod to calculate endpoint associative strengths
in blocking and summation experiments (described in Section 3.1),
as predicted by three prominent models of associative learning,
the Rescorla and Wagner (1972) model, Pearce’s (1987) ‘‘config-
ural’’ model, and Brandon, Vogel, and Wagner’s (2000) ‘‘replaced
elements’’ model. My goal is to demonstrate that the method is
practical and leads to novel insights in associative learning theory.

The endpoint method rests on previous work showing that
many models of associative learning can be described in the for-
malism of so-called kernel machines, which thus provides a unify-
ing formal framework (Ghirlanda, 2015; Jones & Zhang, 2015). Be-
cause kernel machines are not widely used in associative learning
theory, I provide a concise introduction.
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Table 1
Kernel machines and associative learning models. Symbols as in Eqs. (1) and (2).

Symbol Kernel machine Associative learning

S All patterns of interest All stimuli of interest
F Familiar patterns Training stimuli
V(X) Output to pattern X Associative strength of X
λX Correct output to X Target associative strength of X
⟨X, Y ⟩ Similarity between X and Y Generalization between X and Y

2. Methods

2.1. Kernel machines and associative learning theory

As originally conceived in AI, a kernel machine is a device that
estimates the correct response to unfamiliar input patterns by
comparing them to familiar patternswith known correct responses
(Jäkel, Schölkopf, & Wichmann, 2007; Schölkopf & Smola, 2002). A
typical application would be to guess whether an image depicts
a face by comparing it to a data base of known face and non-
face images. The central idea is simple yet powerful. To calculate
the response to a pattern Y , we first compute its similarity to all
familiar patterns, according to some similarity metric. Similarity
is then used as a basis for generalization, under the assumption
that – barring evidence of the contrary – similar inputs require
similar outputs. Intuitively, the output to an unfamiliar pattern Y
approximates the output to the familiar patterns towhichY ismost
similar. The mathematical function that defines how the machine
measures similarity is called a ‘‘kernel’’ (Jäkel et al., 2007).

Formally, kernel machines are defined as follows. Let S be the
set of patterns of interest, andF ⊂ S the subset of familiar patterns.
In practice, patterns are ‘‘perceived’’ by the machine as vectors of
binary- or continuous-valued components. I will write x the vector
that represents pattern X . Further, I write ⟨X, Y ⟩ the similarity
between patterns X and Y , which is computed from the vectors x
and y that represent the two patterns. The machine’s response to
pattern Y is written V (Y ) and is defined as a weighted sum of the
pattern’s similarities to all familiar patterns:

V (Y ) =

∑
X∈F

wX ⟨X, Y ⟩ (1)

where wX is the weight attributed to familiar pattern X . The
weight values are crucial in determining themachine’s output, and
various methods exist to set them so that the machine behaves
as desired. For example, the machine may be configured so that
it correctly partitions input patterns in two classes (Schölkopf &
Smola, 2002). The following method is equivalent to the error-
correcting learning rule commonly used in associative learning
models (Blough, 1975; Pearce, 1987; Rescorla &Wagner, 1972). Let
λX be the correct output to X . Patterns from the training set F are
presented successively in random order, and for each presentation
we calculate the error λX − V (X). We then change the weight wX
by a quantity ∆wX that is a fraction of the error:

∆wX = β
(
λX − V (X)

)
(2)

where β is a positive number. If β is small enough, and if this
procedure is iterated sufficiently many times, the machine will
learn to closely approximate the correct outputs, if it can solve the
problem at all (Haykin, 2008; Widrow & Stearns, 1985).

Table 1 maps the terminology of kernel machines into that of
associative learningmodels. Familiar patterns become stimuliwith
which animals are trained, V (Y ) becomes the associative strength
of stimulus Y , and ⟨X, Y ⟩ the extent to which experiences with
X generalize to Y . The crucial question is: Do kernel machines
actually describe associative learning models that are relevant to
current research? For surprisinglymanymodels, the answer is yes.

Eqs. (1) and (2) are almost identical to the equations that
Pearce’s (1987) influential ‘‘configural’’ model, the only difference
being that Pearce assumes ⟨X, X⟩ = 1 and thus writes Eq. (1)
as V (Y ) = wY +

∑
X ̸=YwX ⟨X, Y ⟩. Here I allow ⟨X, X⟩ ̸= 1

as this expands the range of models that can be described. The
main difference between Pearce’s model and kernel machines is
that Pearce considered a specific ⟨X, Y ⟩ function (Table 2), while
working with generic functions enables us to derive results that
hold for different models. For example, we can describe so-called
‘‘elemental’’ models, although these have been considered quite
distinct from configural models (Ghirlanda, 2015). In elemental
models, the associative strength of X is calculated as

V (X) =

n∑
i=1

vixi (3)

where x is the vector that represents X , and v is a vector of
‘‘elemental weights’’ that can be modified by learning, typically
according to the Rescorla and Wagner (1972) rule:

∆vi = β
(
λX − V (X)

)
xi (4)

As shown in Ghirlanda (2015), such a model is equivalent to a
kernelmachinewith a specific kernel function, i.e., the vector inner
product:

x · y =

n∑
i=1

xiyi (5)

In other words, if ⟨X, Y ⟩ = x ·y, then the kernel machine defined in
Eqs. (1) and (2) will always yield the same results as the elemental
model defined in Eqs. (3) and (4).

Table 2 shows some prominent learningmodels, both historical
and current, seen as kernel machines with different generaliza-
tion function and choice of stimulus representation. All elemental
models use inner-product generalization, but differ in stimulus
representation.

2.2. The endpoint equations

The main result we want to establish is that, if we limit our
analysis to phase endpoints, we can typically calculate associative
strengths without solving or simulating learning equations. Let us
begin with the simplest illustration: a single training stimulus Y
is presented during a single experimental phase, during which its
associative strength changes from an initial value V0(Y ) to a final
value V1(Y ). Our goal is to calculate how this change reflects on
the associative strengths of other stimuli. By definition of kernel
machine (Eq. (1)) we have

V0(Y ) =

∑
X∈F0

w
(0)
X ⟨X, Y ⟩ (6)

V1(Y ) =

∑
X∈F0∪Y

w
(1)
X ⟨X, Y ⟩ (7)

where F0 is the set of stimuli that had been experienced before the
experiment (which may or may not include Y ), and w

(k)
X indicates

theweight of X at endpoint k. According to Eq. (2), because training
involved only Y , only w

(1)
Y can have changed. Thus subtracting

Eq. (6) from Eq. (7) we have

V1(Y ) − V0(Y ) =

[
w

(1)
Y − w

(0)
Y

]
⟨Y , Y ⟩ (8)

such that the change in wY , written c(1)Y , is determined:

c(1)Y = w
(1)
Y − w

(0)
Y =

V1(Y ) − V0(Y )
⟨Y , Y ⟩

(9)
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