
Journal of Mathematical Psychology 84 (2018) 1–12

Contents lists available at ScienceDirect

Journal of Mathematical Psychology

journal homepage: www.elsevier.com/locate/jmp

Review

Parameter estimation of the Linear Phase Correction model by
hierarchical linear models
Dominic Noy a,b,*, Raquel Menezes a

a Center of Mathematics (CMAT), School of Science, University of Minho, Portugal
b Department of Basic Psychology, School of Psychology, University of Minho, Portugal

h i g h l i g h t s

• The Linear Phase Correction model captures the synchronization of movements with metronomes.
• Its current parameter estimation method is called ‘‘bounded Generalized Least Squares’’ method.
• It averages estimates from multiple synchronization sequences and is biased in certain conditions.
• We present (a) an extended Linear Model that integrates multiple sequences within a single model and (b) a Mixed-Effects Model, that additionally

incorporates random effects.
• To reduce the estimation biases caused by (a) a shortened sequence length and (b) between-sequence variability.
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a b s t r a c t

The control of human motor timing is captured by models that make assumptions about the underlying
information processingmechanisms. A paradigm for its inquiry is the Sensorimotor Synchronization task,
in which an individual is required to synchronize the movements of an effector, like the finger, with
repetitive appearing onsets of an external event. The Linear Phase Correction model is a cognitive model
that captures the asynchrony dynamics between the finger taps and the event onsets. However, when
the synchronization periods are short and/or when there is variability between multiple sequences, the
existing parameter estimation methods are biased. Therefore, this work is an approach of unbiased pa-
rameter estimation of the LPCmodel. Based on simulated data, we, first, present a method that integrates
multiple sequences within a single model and estimates the model parameters of short sequences with a
clear reduction of bias. Second, by relating random effects to the asynchronies sharing the same sequence,
we show that parameters can also be retrieved robustly when there is between-sequence variability of
their expected values. Since such variability is common in experimental and natural settings, we herewith
propose a method that increases the applicability of the LPC model. This method can fit data from short
and varied sequences, which may reduce parameter biases due, for example, to fatigue or attentional
variation. This allows experimental control that previous methods are unable to provide.
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1. Introduction

Humans are able to coordinate their movements with nearby
moving objects in the environment with a remarkable ease. This
requires a highly timed communication of the perception–action
systems underpinning the movement control. In order to investi-
gate the underlying timing mechanisms employed by the central
nervous system (CNS), researchers study participants’ attempt to
synchronize their movements concurrently with repetitively oc-
curring environmental events. Synchronization can be understood
as a simplified type of coordination because it is constrained in
space and time. It is particularly important in activities such asmu-
sic, sports, andmanufacturing. Synchronizingmovementswas also
shown to improve the interaction with the partner by increasing
social attachment and cooperation (Reddish, Fischer, & Bulbulia,
2013; Valdesolo, Ouyang, & DeSteno, 2010; Wiltermuth & Heath,
2009), rapport (Miles, Nind, & Macrae, 2009), and likability (Lau-
nay, Dean, & Bailes, 2014), and it was traditionally used as a means
to enhance self-esteem and obedience (Valturio, 1921).

The study of motor synchronization is mostly focused on ef-
fectors like the fingers (Repp, 2005), the forearms (Mörtl et al.,
2012), or the feet (vanUlzen, Lamoth, Daffertshofer, Semin, & Beek,
2008) to be timed with external events like auditory metronomes,
light displays, or interacting partner movements (Noy et al., 2017;
Schmidt & Richardson, 2008).

Within the framework of event-based timing models, a suc-
cessful synchronization requires the individual to (a) perceive the
event onsets; (b) perceive her or his movement onset; (c) compute
the asynchrony between both onsets; (d) compute the temporal
progression of the repeated event series; (e) follow all these steps
to predict upcoming event onsets.

Based on these perceptual processes, appropriate motor com-
mands can be computed so that the asynchrony between the
movement and the event becomes reduced to a minimum (Grush,
2004; Van Der Steen & Keller, 2013). When the external event
is presented with constant temporal intervals (these may also
vary slightly), this paradigm is called Sensorimotor Synchronization
(SMS) (Repp, 2005).

There are cognitive models accounting for the empirical find-
ings obtained from SMS tasks. Cognitive models usually use a
mathematical representation, formalized as a parametrized sys-
tem of equations that receives input, for example, sensory cues
about the onsets and previous asynchronies and intentions to
reduce the asynchrony (Jacoby, Tishby, Repp, Ahissar, & Keller,
2015; Schulze & Vorberg, 2002; Wing & Kristofferson, 1973) and
produce output, for example a motor response to reduce the next
asynchrony or the actual asynchrony sequence. By solving (or
approximating) such systems, its parameters can be identified.

For a given input and set of parameters, these models can be
challenged by comparing their analytical or simulated output with
experimental observations. By systematically manipulating the
input, it can be tested whether such processes – as postulated by
the particular model – in fact underpin the information processing
of the CNS.

Because in experiments there are always variables that can
neither be manipulated nor controlled – i.e., there is noise within
and outside the CNS – these problems are usually approached in a
probabilistic manner. Within the framework of probability theory,
a model can be defined as a parametric family of probability dis-
tributions. The combination of probability distributions (indexed
by parameters) determines the distribution of the input and as-
sociates a probability of occurrence to each output. Probabilistic
models are used tomodel cognitive abilities. Usually, the challenge
is to determine how the input and the output relate to the model
parameters in question (Myung, 2003).

In cognitive models of motor synchronization, the output is the
sequence of asynchronies obtained from the onsets of the oscil-
lating movements of an individual and the onsets of a repetitively
appearing stimulus. Our scope is (a) to give a brief overview of such
models, (b) present their current parameter estimation approaches
and limitations, and (c) to introduce a novel approach of parameter
estimation.

1.1. Timing models

1.1.1. Continuation tapping
In order to account for human timing processes, Wing and

Kristofferson (1973) developed a probabilistic cognitive model,
which describes the timing behavior of individuals who have
to execute repetitive movements at constant temporal intervals.
When the intervals are determined by an external metronome
that suddenly stops and the individual is required to continue
executing the constant movement intervals, this method is called
the Synchronization–Continuation paradigm. Based on the variabil-
ity of the movement intervals (i.e., the time between two succes-
sive taps), Wing and Kristofferson (1973) proposed the following
model1 :

Ij = Cj − Dj−1 + Dj, (1)

where Ij is the movement interval j, Cj is the internal represen-
tation of the interval Ij (time keeper), and Dj is the motor delay.
The quantity Ij is the temporal response interval bounded by two

1 For the introduction of the existing models and techniques, we used the
notation of the original articles. For this reason, notations of the same variables and
parameters can vary throughout this work.
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