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a b s t r a c t

Perceiving time intervals is an essential ability of many animals, whose psychophysical properties have
yet to be fully understood. A common theoretical approach is to consider that internal representations of
time intervals are reflected in probability distribution functions. Depending on the mechanism proposed
for interval timing inverse Gaussian and log-normal probability distributions are candidate distributions
to represent internal representations of time. In this article, we show that these two distributions
approximate each other under the assumptions of mean accuracy and scalar timing when considering
experimentally-relevant Weber fractions. Afterward, we show that both distributions may be used in
the description of the temporal bisection task, predicting bisection times approximately at the geometric
mean of reference time intervals for the experimental range of Weber fractions. Taken together these
results suggest that the log-normal and the inverse Gaussian, when adapted to model subjective time
intervals, are experimentally indistinguishable, and so are the models that use them as benchmarks.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The way humans and other animals perceive time has been a
popular matter of study for several decades. A central question
regarding thismatter is how time intervals are encoded or, in other
words, how time intervals are internally represented.

One approach that has been taken in seminal papers was in-
vestigating whether the subjective time scale could be coded in
a nonlinear (e.g. logarithmic or a power law of the physical time)
fashion. In fact, both logarithmic and power law scales (the latter
being associated with the scalar timing hypothesis) have been
shown to be compatible with Weber’s Law (Gibbon, 1981), also
known as scalar property in the context of interval timing liter-
ature. This property states that the standard deviation and the
mean of the distribution of a subject’s timing responses covary
linearly (Gibbon, 1977). Furthermore, several remarkable results
from psychophysical experiments have indicated that logarithmic
subjectivemagnitude scales better explain performance in abstract
numerical and sensory tasks (Buzsáki & Draguhn, 2004; Dehaene,
2003; Dehaene, Izard, Spelke, & Pica, 2008; Nieder & Miller, 2003;
Nover, Anderson, & DeAngelis, 2005).

The temporal bisection procedure is often used to investigate
the psychophysics of interval timing. In this task, subjects are
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prompted with a forced binary choice protocol, to decide whether
a newly presented time interval is closer to a shorter or a longer
time reference. The stimulus duration for which subjects answer
‘‘short’’ or ‘‘long’’ in an equal number of trials is named bisection
time. In a seminal bisection task article (Church & Deluty, 1977),
rats showed bisection times at approximately the geometric mean
of the reference intervals.

The log-normal distribution has been credited for describing
a very general class of events associated with complex activity
involving multiplicative noise (Limpert, Stahel, & Abbt, 2001).
Psychometric functions of time have also been described through
the use of log-normal distributions, to address the ‘‘log-timing’’
hypothesis (Gibbon, 1981). The assumption of normality in a
putative logarithmic subjective time scale leads to the log-normal
distribution since it is equivalent to a Gaussian distribution in a
logarithmic scale (Fig. 1A). Gibbon has also shown (Gibbon, 1981)
that bisection times should be equal to the geometric mean of
reference intervals in the context of log-timing, if the likelihood
ratio test from signal detection theory is used to compare short
and long time intervals. This test consists in comparing the prob-
abilities that a perceived time stimulus was generated by a short
or a long time interval. The log-normal distribution also has the
useful property of being the distribution of maximum entropy, if
the logarithm of a random variable is constrained with fixed mean
and variance (Park & Bera, 2009). An extensive review of the use
of log-normal distributions in neuroscience has been published
elsewhere (Buzsáki & Mizuseki, 2014).
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Fig. 1. Possible ways of generating Log-normal and inverse Gaussian in timing
processes. (A) Rationale behind the observation of a log-normal distribution by
the encoding process in a log scale. Encoding is represented as the transfer of a
time interval from the objective time (horizontal axis) to the psychological time
(vertical axis) through a logarithmic transformation. Even when the same interval
is encoded repeatedly, the internal representation is noisy due internal noise of the
encoding process, generating a Gaussian distribution of values in the subjective
scale. Decoding is the inverse process, i.e. the transformation of values from a
log-scale to a linear scale (exponential transformation). If one assumes that the
objective time is encoded in a logarithmic scale (dashed purple curve), the Gaussian
distribution is transformed to a log-normal distribution, shown by the response
time distribution observed experimentally (cyan curve). (B) Drift–diffusion model
leading to an inverse Gaussian distribution. Each line represents a decision variable
subject to a drift–diffusion process. The red dots represent the instant in which a
drift process crossed the threshold for the first time, called the first passage time.
The histogram displays the counts of first passage times, and the continuous black
line is the theoretical distribution of this random variable, the Inverse Gaussian
distribution. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

In a recently proposed drift–diffusion model of interval tim-
ing (Simen, Balci, Cohen, Holmes, et al., 2011), the inverseGaussian
distribution arises as the response time distribution, when we
consider the moment the drift process crosses a response thresh-
old for the first time (Fig. 1B). Additionally, this work showed
that for small coefficients of variation, inverse Gaussian, gamma
and Gaussian distributions approximate each other. Note that at
least one other drift–diffusion based interval timing model has
been proposed independently elsewhere (Rivest & Bengio). The
drift–diffusion framework has also been successful in modeling
temporal bisection, by use of a two-stage sequential diffusion
process (Balcı & Simen, 2014). Inverse Gaussian distributions
are also used to fit peak-interval data from other sets of exper-
iments (Church, Lacourse, & Crystal, 1998; Church, Meck, & Gib-
bon, 1994). More recently, time-adaptive drift–diffusion models
have been shown to explain behavior in peak-procedure tasks

while being formally equivalent to the scalar expectation theory
(SET) (Luzardo, Rivest, Alonso, & Ludvig, 2017).

Here, we show that log-normal and inverse-Gaussian probabil-
ity distribution functions approximate each other and become ex-
perimentally indistinguishable for small Weber constants. More-
over, we could predict the experimental result that the bisection
point is approximately equal to the geometric mean of the learned
intervals, by using either distribution to model decision variables
in a binary decision task.

This finding implies that a classic result in the bisection task can
be equivalently obtained by using probability distribution func-
tions that arise in diverse contexts within the theory of interval
timing, namely drift–diffusion models and log-timing models. We
expect that this finding will guide theoretical researchers in ex-
panding and improving models for the encoding of time intervals.

2. Results

2.1. Log-normal and inverse Gaussian reparametrized distributions
are numerically equivalent for small Weber constants

The bisection task (Church&Deluty, 1977) consists in training a
subject to discriminate between a short (T1) and a long (T2) interval.
After each stimulus is presented, the subject is required to produce
one of two possible responses, e.g. pressing left or right lever. Each
of these responses is associatedwith each reference interval so that
only the correct response leads to reinforcement. By the end of
the training phase, subjects are expected to reliably discriminate
between short and long stimuli, producing the correct response
after each presentation. In the testing phase, subjects are exposed
to intervals whose durations are in between the short and long
intervals. As in the training phase, they are also prompted with a
binary forced decision. Subjects judge whether each intermediate
interval is more similar to the short or the long reference interval,
producing the response associated with them. The intermediate
time interval stimulus at which subjects respond ‘‘short’’ or ‘‘long’’
with equal frequency – indicatingmaximal uncertainty – is named
bisection time (Fig. 3).

Several interval-timing models directly or indirectly consider
that perceived time intervals are better described by probability
distribution functions (PDFs). Some of these models also create
specific distinctions between the stages of perception, evaluation,
and production of responses (Jazayeri & Shadlen, 2010), while
others rely on a bottom-up strategy from single neurons to neuron
clusters, in order to obtain an appropriate PDF model of timed
responses (Matell & Meck, 2004; Simen et al., 2011).

Since we are interested in understanding the mathematical
properties of PDFs that describe performance in a bisection task,
we can use a simple model based on the signal detection theory
framework, similarly to what has been done previously (Gibbon,
1981). In short, each reference time interval can be interpreted as a
signal and represented internally through its associatedprobability
distribution function. This allows for a straightforward interpre-
tation of the bisection point as the point of greatest uncertainty
between two time interval signals in a bisection task, as we will
discuss further.

We define fXi as the distribution of the decision variable associ-
ated with time interval Ti, for i = 1, 2. The decision variable will
be used as a criterion in the context of a bisection task in order to
determine which interval has been presented to the subject in a
given trial, ‘‘short’’, or ‘‘long’’. Our first objective is to draw conclu-
sions based on two simple – yet fundamental – assumptions on
fXi :

1. Subjects time the target duration correctly on average (mean
accuracy): The expected value of Xi is Ti.
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