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h i g h l i g h t s

• A tutorial on jointly modeling neural and behavioral measures is presented.
• Simulated data from Directed and Hierarchical models are used.
• A real-world example is used containing data from a perceptual discrimination task.
• User-friendly JAGS code is provided in all examples.
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a b s t r a c t

A growing synergy between the fields of cognitive neuroscience and mathematical psychology has
sparked the development of several unique statistical approaches exploiting the benefits of both disci-
plines (Turner, Forstmann et al., 2017). One approach in particular, called joint modeling, attempts to
model the covariation between the parameters of ‘‘submodels’’ intended to capture important patterns
in each stream of data. Joint models present an interesting opportunity to transcend conventional levels
of analyses (e.g., Marr’s hierarchy; Marr, 1982) by providing fully integrative models (Love, 2015). In
this manuscript, we provide a tutorial of two flavors of joint models — the Directed and Covariance
approaches. Computational procedures have been developed to apply these approaches to a number of
cognitive tasks, yet neither have been made accessible to a wider audience. Here, we provide a step-
by-step walkthrough on how to develop submodels of each stream of data, as well as how to link the
importantmodel parameters to form one cohesivemodel. For convenience, we provide code that uses the
Just Another Gibbs Sampler (Plummer, 2003) software to perform estimation of the model parameters.
We close with a demonstration of the approach applied to actual data from a contrast discrimination task
where activation parameters of early visual areas are directly mapped to the drift rate parameter in a
simplified version of the diffusion decision model (Ratcliff, 1978).

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The evolution of technology for measuring brain signals, such
as electroencephalography (EEG) and functional magnetic reso-
nance imaging (fMRI), has provided exciting new opportunities for
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hosts all of the code used in this tutorial (https://github.com/MbCN-lab/joint-
modeling-tutorial) as well as a repository on the Open Science Framework (https:
//osf.io/qh7xr/?view_only=aafea8d894e74ee38ec67b7cc3b55780).
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studyingmental processes. Today, scientists interested in studying
cognition are facedwithmany options for relating experimentally-
derived variables to the dynamics underlying a cognitive process of
interest. While conceptually the presence of these new ‘‘modali-
ties’’ of cognitive measures could have immediately spawned an
interesting new integrative discipline, the emergence of such a
field has been slow relative to the rapid advancements made in
these new technologies. Until a little over a decade ago,muchof our
understanding of cognition had been advanced by two dominant
but virtually non-interacting groups. The largest group, cognitive
neuroscientists, relies on statistical models to understand patterns
of neural activity brought forth by the new technologies. The
models used by cognitive neuroscientists are typically data-mining
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techniques, and these models often disregard the computational
mechanisms thatmight detail a cognitive process. The other group,
mathematical psychologists, is strongly motivated by theoretical
accounts of cognitive processes, and instantiates these theories by
developing formal mathematical models of cognition. The models
often assume a system of computations and equations intended to
characterize the processes assumed to take place in the brain. As a
formal test of their theory,mathematical psychologists usually rely
on their model’s ability to fit and predict behavioral data relative
to the model’s complexity.

Although both groups are concerned with explaining behavior,
cognitive neuroscientists and mathematical psychologists tend
to approach the challenge from different vantage points. To ap-
preciate the distinction between the fields, we can use Marr’s
(1982) levels of analysis, where our understanding of the mind
can be advanced by considering a computational, algorithmic, and
implementational level. At the computational level, our goal is to
understand what a system does, and more importantly, why the
system does what it does. At the algorithmic level, our goal is to
understand exactly how a system does what it does, specifically
what types of representations are used to perform the task. At
the implementational level, our goal is to understand how the
system can be physically realized, or how the representations in
the algorithmic level could be created given biological constraints.
Mathematical psychologists tend to focus on the computational
and algorithmic levels, whereas cognitive neuroscientists tend to
focus on the implementation level. Although progress can bemade
bymaintaining a tight focus on one level,many important opportu-
nities are lost (Love, 2015). For example, without an overarching
theory explaining how the mind generally solves problems, such
as a theory that might be developed at the computational level, it
can be difficult to aggregate neuroscientific results from various
experimental paradigms that focus on the implementational or
algorithmic levels (cf. Coltheart, 2006).

As a remedy, new work has endeavored to integrate the lev-
els of analysis in an effort to relate mechanisms assumed by
mathematical models to the neural computations supporting task-
specific behavior within the brain. However, integrating the two
fields is made difficult by the fact that mechanisms in math-
ematical models are often necessarily abstract, whereas neu-
rophysiological measures are physical realizations of cognitive
processes (Turner, 2015). The importance of solving the in-
tegration problem has created several entirely new statistical
modeling approaches developed through collaborations between
mathematical psychologists and cognitive neuroscientists, collec-
tively forming a new field often referred to as ‘‘model-based cog-
nitive neuroscience’’ (e.g., Boehm, Van Maanen, Forstmann, & Van
Rijn, 2014;Daw&Doya, 2006;Daw,Niv, &Dayan, 2005; Forstmann
&Wagenmakers, 2014; Forstmann,Wagenmakers, Eichele, Brown,
& Serences, 2011; Frank, Seeberger, & O’Reilly, 2004; Love, 2015;
Mack, Preston, & Love, 2013; Palmeri, Schall, & Logan, 2015; Turner,
Forstmann et al., 2013; Turner, Van Maanen, & Forstmann, 2015;
van Maanen et al., 2011).

At this point, there are several approaches for integrating neu-
ral and behavioral measures via cognitive models, and these ap-
proaches are neither restricted to any particular kind of neural or
behavioral measure, nor to any particular cognitive model (see
de Hollander, Forstmann, & Brown, 2016; Turner, Forstmann, Love,
Palmeri, & VanMaanen, 2017 for reviews). A convenient taxonomy
for organizing these approaches can be built from considering a
researcher’s goals in relating themeasures to one another (Turner,
Forstmann et al., 2017). One goal might be to use the neural data
to constrain a behavioral model. Another goal might be to identify
patterns of neural data that are consistent with specific computa-
tions carried out in the behavioral model. The final goal, which is
the focus of the current article, is to enforce statistically reciprocal

relationships between the neural measures and the parameters of
a behavioral model by modeling these random variables simulta-
neously (see Forstmann et al., 2011 for some motivation).

One successful method of performing simultaneous modeling
has been the ‘‘joint modeling’’ approach (Cassey, Gaut, Steyvers, &
Brown, 2016; Turner, 2015; Turner, Forstmann, et al., 2013; Turner,
Rodriguez, Norcia, Steyvers, & McClure, 2016; Turner et al., 2015;
Turner, Wang, & Merkel, 2017). Joint models were developed as
an alternative to the ‘‘two-stage’’ correlation approaches, where
parameters of a fitted cognitive model were simply correlated
with a neural measure of interest. While a two-stage correlation
approach does give insight into how parameters of a cognitive
model are related to brain data, this approach misses an oppor-
tunity to enforce a constraint on the model parameters based on
the random variation in the neural data. In other words, if one
treats the neural data as a covariate, the estimates of the behavioral
model parameters can be better informed. This simple covari-
ate approach gives joint models some advantages in articulating
brain-behavior relationships. Specifically, joint models are better
equipped to (1) handle mismatching (i.e., when the size of the
neural data is different from the size of the behavioral data) and
missing data, (2) perform inference on the magnitude of brain-
behavior relationships (i.e., they are not subject to Type I errors as
in the two-stage approach), (3) compare different brain-behavior
relationships across models, and (4) make predictions about either
neural or behavioral data.

At their highest level, joint models simply require an expres-
sion specifying the joint distribution of the measures N obtained
by using cognitive neuroscience techniques (e.g., EEG, fMRI) to
measures of behavior B (e.g., choice, response time). Given this
intentionally vague definition, there are many ‘‘classes’’ of joint
models that vary in the way N is structurally related to B. For the
purposes of this article, we narrow our focus to three types of
jointmodels: Integrative, Directed, and Covariance. Asmany of our
research efforts havemodeled the covariation betweenN and B via
the Covariance approach, we may have given the impression that
joint models are inherently structured in a specific way, but this
is not the case. Here, we present a more comprehensive account
of different types of models that we collectively refer to as ‘‘joint
models’’. Three types of joint models are illustrated in Fig. 1 via
graphical diagrams, where observed variables (e.g., N and B) are
shown as filled square nodes, and parameters are shown as empty
circles. Paths between the nodes in the graph indicate dependency
among the nodes, where an arrow pointing from one node to an-
other indicates a ‘‘parent-to-child’’ ancestry (Pearl, 1988). In other
words, the node being pointed at depends on the node fromwhich
the arrow originates. Although the three types of joint models
can be illustrated with similar graphical diagrams, the structures
introduce different constraints, which have major implications for
a joint model’s complexity relative to the observed data. We now
discuss each of the three classes of joint models in Fig. 1.

1.1. Integrative approach

The first joint modeling approach we will focus on is the In-
tegrative approach, where a single cognitive model is developed
to predict neural and behavioral measures simultaneously. The
Integrative approach is depicted on the left side of Fig. 1. Here,
the neural data N and the behavioral data B are explained together
through a single set of parameters θ , indicated by the connections
from θ to both N and B. Alternatively, Integrative joint models
can use a set of modulators to transform an internal state of
a model into a prediction about the precise functional form of
the neural measures. For example, different modulators would
be necessary to make predictions for a blood oxygenated level
dependent (BOLD) response in an fMRI study versus predictions for



Download English Version:

https://daneshyari.com/en/article/6799238

Download Persian Version:

https://daneshyari.com/article/6799238

Daneshyari.com

https://daneshyari.com/en/article/6799238
https://daneshyari.com/article/6799238
https://daneshyari.com

