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h i g h l i g h t s

• Uncertainty in the process of decision making is quantified with the aid of the Heisenberg–Robertson inequality.
• This approach demonstrates dependence of incompatibility of questions on the mental state of decision maker.
• A one parametric family of operators representing incompatible questions as a continuous deformation of compatible is constructed and this formalism

is applied to modeling of the order effect statistical data.
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a b s t r a c t

This paper contributes to quantum-like modeling of decision making (DM) under uncertainty through
application of Heisenberg’s uncertainty principle (in the form of the Robertson inequality). In this
paper we apply this instrument to quantify uncertainty in DM performed by quantum-like agents. As
an example, we apply the Heisenberg uncertainty principle to the determination of mutual interrelation
of uncertainties for ‘‘incompatible questions’’ used to be asked in political opinion pools.We also consider
the problem of representation of decision problems, e.g., in the form of questions, by Hermitian operators,
commuting and noncommuting, corresponding to compatible and incompatible questions respectively.
Our construction unifies the two different situations (compatible versus incompatible mental observ-
ables), by means of a single Hilbert space and of a deformation parameter which can be tuned to describe
these opposite cases. One of the main foundational consequences of this paper for cognitive psychology
is formalization of the mutual uncertainty about incompatible questions with the aid of Heisenberg’s
uncertainty principle implying the mental state dependence of (in)compatibility of questions.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

During the recent years the quantum-like approach to mod-
eling of cognition and decision making (DM) under uncertainty
has been increasingly applied to behavioral results surprising
or problematic from classical perspectives.1 One of the main
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1 As some representative works, we canmention the following: Aerts, Broekaert,

Gabora, and Sozzo (2016), Asano, Basieva, Khrennikov, Ohya, and Tanaka (2012,
2017), Asano, Khrennikov, Ohya, Tanaka, and Yamato (2015), Bagarello (2012,
2015), Bagarello, Di Salvo, Gargano, and Oliveri (2017), Boyer-Kassem, Duchene,
and Guerci (2016), Busemeyer and Bruza (2012), Busemeyer, Pothos, Franco, and
Trueblood (2011), Busemeyer, Wang, and Townsend (2006), de Barros (2012),

distinguishing features of this approach is the possibility to
treat mutually incompatible (‘‘complementary’’) DM problems,
e.g., questions, inside the commonmodel based on quantum prob-
ability. Experts in ‘‘classical DM-theory’’ were well aware about
the existence of such problems, e.g., in the form of the disjunction,
conjunction, and order effects (see, e.g., Tversky & Shafir, 1992).
The attempts to represent incompatible problems in the classical
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(2014), Khrennikov and Haven (2007), Khrennikova and Haven (2016), Plotnitsky
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Busemeyer (2011), and Trueblood and Busemeyer (2012), Wang and Busemeyer
(2013), Zhang and Dzhafarov (2015), and references therein.

https://doi.org/10.1016/j.jmp.2018.03.004
0022-2496/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jmp.2018.03.004
http://www.elsevier.com/locate/jmp
http://www.elsevier.com/locate/jmp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmp.2018.03.004&domain=pdf
mailto:Andrei.Khrennikov@lnu.se
https://doi.org/10.1016/j.jmp.2018.03.004


50 F. Bagarello et al. / Journal of Mathematical Psychology 84 (2018) 49–56

probabilistic framework led to a number of paradoxes and theoret-
ical proposals augmenting classical probabilistic inferencewith ad-
ditional assumptions (e.g., Costello & Watts, 2014; Tentori, Crupi,
& Russo, 2013). The best known are the Allais (1953), Ellsberg
(1961) and Machina (1982) paradoxes, but in their review Erev,
Ert, Plonsky, Cohen, and Cohen (2016) count 35 basic paradoxes
of classical DM-theory.

Quantum-like modeling of DM, or more generally, cognition
is based on the quantum methodology and formalism, but not
on quantum biophysics (cf., e.g., works of Hameroff (1994) and
Penrose (1989) about reduction of cognition to quantum physical
processes in the brain). In the quantum-like framework the brain is
a black box, such that its information processing can be described
by the formalism of quantum theory. ‘‘Mental observables’’, e.g., in
the formof questions, are represented byHermitian operators (and
in more general framework by so-called positive operator valued
measures, Asano et al., 2015). The mental state (or the belief state)
of an agent is represented like a quantum state, i.e., a normalized
vector of the state space (or, more generally, a density operator
representing the classical statistical mixture of pure states).

Therefore we can apply the Heisenberg uncertainty principle
to characterize interrelation of uncertainties of two incompatible
questions (or tasks) A and B. In the general form the Heisenberg
uncertainty principle is expressed in the form of the Robertson
inequality:

σA(ψ)σB(ψ) ≥ |⟨[A, B]/2⟩ψ |, (1.1)

where [A, B] = AB − BA is the commutator of the operators,
⟨[A, B]⟩ψ is the mean value of the commutator with respect to the
state ψ, σA(ψ), σB(ψ) are the standard deviations of the observ-
ables A and B with respect to the state ψ.

The operators representing the position and momentum ob-
servables satisfy a very special commutation relation (the canon-
ical commutation relation): [q, p] = i11, where 11 is the unit
operator. By using this relation and the Robertson inequality we
obtain the original Heisenberg inequality:

σq(ψ)σp(ψ) ≥ 1/2. (1.2)

We emphasize that the latter imposes a state-independent con-
straint onto the product of standard deviations, since the right-
hand side of (1.2) does not depend on the state ψ. This is very
important property of the Heisenberg inequality. In general we do
not have a state independent estimate of the formσq(ψ)σp(ψ) ≥ c,
where c > 0 does not depend on ψ (cf. with (1.2)). The lower
bound for the interrelation between the standard deviations is state
dependent.

Thus, even for noncommuting mental observables A and B, the
right-hand side of the Robertson inequality (1.1) can be equal to
zero. In this case the observables A and B are similar to classical
observables. In particular, if [A, B]ψ = 0 for some mental state,
we assume an equivalence with classical probability description
in the form of random variables, see Section 3. In quantum foun-
dations this issue was studied in very detail by Ozawa (2006,
2011, 2016) and we shall apply his approach to DM and cognition,
Section 3. In that section we shall refer to the condition of spectral
commutativity. The latter is equivalent to condition [A, B]ψ = 0
in the case of dichotomous observables (which we focus on in
this paper). However, for general observables [A, B]ψ = 0 does
not imply spectral commutativity and hence does not imply the
possibility of using the classical probability model.2 (Note that the

2 Here we speak about the noncontextual classical probability model. Contextual
classical measure-theoretic models can serve even for representation of incompat-
ible observables (see Khrennikov, 2010, and Dzhafarov & Kujala, 2014a; 2014b;
2016; 2017; Dzhafarov et al., 2017).

condition [An, Bm
]ψ = 0 for any n,m is equivalent to the spectral

commutativity of A, B.)
The more general situation, ⟨[A, B]⟩ψ = 0, is more complicated

from the interpretational viewpoint (Section 3).Wenote that in the
finite-dimensional space (used for representation of beliefs) it is
impossible to construct Hermitian operators satisfying the canon-
ical commutation relation. Moreover, any Hermitian operator has
eigenvectors and, for states consistent with them, variance equals
zero and (1.1) degenerates to 0 ≥ 0.

The state dependence of the uncertainty relations for mental
observableswas emphasized byKhrennikov andHaven (2007). The
role of the principle of complementarity in cognitive science was
analyzed by Khrennikov (1999) and Wang and Busemeyer (2013).

Section 2 contains the basic mathematical construction that
unifies the two different situations (compatible versus incompat-
ible mental observables) by means of a single Hilbert space and a
deformation parameter θ that can be tuned to describe these op-
posite cases (cf. the work of Pothos and Busemeyer (2013), where
these cases were treated separately and in different state spaces).
The one-parametric families of operators can be used for quantum-
like modeling in cognitive psychology and psychophysics — by
treating θ as the formal parameter (representing the degree of
deformation of compatibility) and selecting it to match experi-
mental data. In Section 5 we use this approach to construct the
Hermitian operator representation of questions demonstrating the
order effect: we match the deformation parameter θ with the
degree of noncommutativity in the sequential joint probability
distributions obtained on the basis of the experimental data taken
from Moore (2002). These operators can be used in the quantum-
like model of Busemeyer and Pothos (2013). Section 3 presents the
most important (for psychological applications) message of this
paper: the state dependence of incompatibility of questions. Thus
to be or not to be compatible depends not only on questions, but
also on the mental state. This statement is very natural from the
cognitive viewpoint and our contribution is to put it into the formal
mathematical framework.

2. Operator representation of incompatible and compatible
questions (‘‘mental observables’’)

We work in finite-dimensional (complex) Hilbert spaces. Such
space H can be represented (by fixing an orthonormal basis) as
the space of vectors ψ = (ψ1, . . . , ψn) with complex coordinates,
endowed with the scalar product given as ⟨ψ, φ⟩ =

∑
iψiφ̄i.

Mental states are represented by normalized vectors of H, and
mental observables, e.g., in the form of questions, are represented
by Hermitian operators.

Consider some decision maker, call her Alice. Following Buse-
meyer and Pothos (2013), we consider the following pair of aspects
of Alice’s life represented in the form of questions (mental observ-
ables):

• Q1: ‘‘Are you happy or not?’’
• Q2: ‘‘Are you employed or not?’’

We represent each aspect of Alice’s life in its own Hilbert state
space. The happiness status is modeled as a two-state system living
in the two-dimensional Hilbert space HH = C2. We introduce an
orthonormal basis FH = {h+, h−} ofHH , and a Hermitian operator
H , the happiness operator, having h± as eigenstates: Hh± = ± h±.
Of course, we have

⟨
hj, hk

⟩
= δjk, j, k = ±. The interpretation

of eigenstates of the happiness operator is clear: if Alice’s state is
Ψ = h+, then she is definitively happy. But she is unhappy if Ψ =

h−. The crucial point is that the state of happiness is not always
explicitly determined; Alice can be in the state of superposition of
happiness andunhappiness. Such amental state is represented by a
linear combinationΨ = α+h++α−h−, with |α+|

2
+|α−|

2
= 1. In
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