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h i g h l i g h t s

• A correspondence between Pavlovian conditioning processes and fractals is proposed.
• This duality is applied to many associative theories and conditioning programs.
• 1/f scaling in human cognition and a random fractal model are compared.
• Slow learning can be interpreted as an excitatory process contaminated by inhibition.
• Individual response is characterized by progressively damped fluctuations.
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a b s t r a c t

We establish a correspondence between Pavlovian conditioning processes and fractals. The association
strength at a training trial corresponds to a point in a disconnected set at a given iteration level. In thisway,
one can represent a training process as a hopping on a fractal set, instead of the traditional learning curve
as a function of the trial. Themain advantage of this novel perspective is to provide an elegant classification
of associative theories in terms of the geometric features of fractal sets. In particular, the dimension of
fractals can measure the efficiency of conditioning models. We illustrate the correspondence with the
examples of the Hull, Rescorla–Wagner, and Mackintosh models and show that they are equivalent to
a Cantor set. More generally, conditioning programs are described by the geometry of their associated
fractal, which gives much more information than just its dimension. We show this in several examples
of random fractals and also comment on a possible relation between our formalism and other ‘‘fractal’’
findings in the cognitive literature.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Making psychology quantitative has been a difficult but feasible
challenge since the first laboratory of psychophysiology estab-
lished by Wundt. Making it a mathematical theory under analytic
control has been, and possibly will always be, a utopia. Neverthe-
less, there are a plethora of analyticmodelswhich are able to fit and
explain data coming from the observation of subjects in specific
experiments. For instance, in the context of behavioral theories
of Pavlovian conditioning, one can study the interplay between a
conditioned stimulus (CS) and the subsequent occurrence of an
unconditioned stimulus (US) of typically high relevance for the
subject, such as food or an electric discharge. Despite their limited
range of applicability, associative conditioning models are useful
for several reasons. First, they express in a compact and economic
way concepts that took time and many pages to be formulated.
For example, the fact that ‘‘the prior activity influences the value
of’’ the stimulus, recognized since the early stages of functionalism
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(Dewey, 1896), translates effectively in a description of condition-
ing as an iterative process progressively modifying the strength
of the association and the salience of the stimulus. Second, they
offer novel insights that can be easily checked and falsified quan-
titatively as new data and experimental designs become available.
The question wewould like to pose in this paper, limited to animal
and human behavior, is: How much can we expand our toolbox of
mathematical models in order to extract valuable information on
learning processes?

The classic 1950s theoretical approaches to simple cases of
conditioning are cast in the language of probability theory [see,
e.g., theworks byBush andMosteller (1951a, b, 1953), Estes (1950),
Estes and Burke, 1953, and the reviews by Bower (1994) and
Mosteller (1958)]. In these models, one considers the probability
p of a given conditioned response (CR) as a function of the trial
number n. The increment ∆pn at each trial is linear in pn; by eval-
uating pn iteratively, one obtains a learning curve. Alternatively,
the probability p can be replaced by the strength of association V .
This change of variable is useful for phenomenological applications
because V , although mediated by internal variables such as the or-
ganism’s motivational state or attention, can directly be measured
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by several performance indicators, in primis the subject response.
For instance, the quality of surprise in the US as a function of the
appearance of the CS was first suggested by Kamin in relation
with cue competition (Kamin, 1968, 1969). For a single CS, the
evolution of the novelty (or ‘‘surprisingness’’) of the US along the
learning curve had been made quantitative already by Hull in
his linear model of Pavlovian conditioning (Hull, 1943). Recast in
modern terminology by Rescorla and Wagner (1972) and Wagner
and Rescorla (1972), this model states that the change ∆Vn in the
strength of the association at the nth trial is

∆Vn = αβ(λ − Vn−1) , n = 1, 2, 3, . . . , (1)

where 0 ⩽ α ⩽ 1 is the salience of the CS, 0 ⩽ β ⩽ 1 is the
salience of the US, and 0 ⩽ λ ⩽ 1 is the magnitude or intensity of
the US (i.e., the asymptote of learning). The term λ−Vn−1 indicates
the surprisingness of the US, which decreases as the associative
strength increases. The association strength gained up to the start
of the nth trial can be found iteratively:

Vn = Vn−1 + ∆Vn = (1 − αβ)Vn−1 + αβλ . (2)

The solution of this equation is

Vn = λ[1 − (1 − αβ)n−1
] . (3)

When no association has been made yet, at the beginning of the
first trial V1 = 0, which fixes the unphysical constant V0 =

−αβλ/(1 − αβ). When λ ̸= 0, the conditioning is excitatory and
the US always occurs after the CS. Maximum learning is achieved
when V = λ. If λ = 0, the US does not show up after the CS
and the conditioning is inhibitory or of extinction. Rescorla and
Wagner extended the linear model to the case of the presentation
of multiple CSs (Rescorla & Wagner, 1972; Wagner & Rescorla,
1972), as we will discuss later.

The main contribution of this paper is to propose a geometric
interpretation of learning processes which carries several advan-
tages. First, it is useful at the time of assessing the efficiency of
these processes quantitatively, both within a given model (how
efficiency is affected by the salience of the stimuli for the sub-
ject) and when comparing different models. The efficiency of an
excitatory conditioning can be roughly defined as the inverse of
the number of trials necessary to increase the associative strength
from 0 to, say, 0.9 λ. This concept is subject-dependent andmay be
used either to compare the learning of different individuals within
the same program or, when averaging over individuals within the
same experimental group, to compare different learning programs.

Specifically, we obtain the following results. (i) We recognize
Eq. (2) as one of the similarity maps defining Cantor sets, which
are an example of peculiar, totally disconnected sets known as
deterministic fractals. (ii) We calculate the Hausdorff dimension
dh of the set for Hull’s model and show that it depends on the
parameters α and β in such a way that the smaller the dimension,
the more efficient the conditioning. (iii) This picture can be gener-
alized to any other conditioning described by iterative equations,
giving explicit multidimensional examples that include Rescorla–
Wagner, Mackintosh, and Pearce–Hall models. As a further appli-
cation to nonlinear sets, (iv) we approximate Mackintosh theory
(in the case of a single cue) with a new model where the recur-
sive equation describes slow learning at intermediate trials; the
dimension of this conditioning process is calculated and shown to
be greater than in the Hull model for the same asymptotic value of
the parameters, in agreement with (ii). Note that, in the presence
of a single cue, the learning rate is already enough to compare
different individuals or programs. One can see this by noting that
the Hausdorff dimension (8) only depends on the product of the
saliences and the smaller the salience, the larger the dimension.
Nevertheless,whenone goes beyond single-cue configurations and

considers more complicated settings (Section 4), it may become
progressively difficult or ambiguous to define effective learning
rates. On the contrary, the Hausdorff dimension is always a well-
defined parameter that provides a quick way to compare different
individuals or models. Unfortunately, in practice, calculating the
Hausdorff dimension for complicated deterministic processes may
be as difficult as deciding on effective learning rates. However, the
fractal paradigm is not limited to the definition of a newparameter,
and its advantages do not end here. (v) The rethinking of learning
processes in geometric terms will allow us to reinterpret condi-
tioning as amixture of excitatory and inhibitory processes rather than
a black-or-white selection of either. The degree of mixing will be
determined by the value of the Hausdorff dimension (Section 6).

(vi) Also, we generalize the construction to random fractals,
which are essential to describe experimental designs of Pavlovian
conditioning where the characteristic of the stimuli are deter-
mined by random algorithms or the US is not presented at all trials
(partial reinforcement). The Hausdorff dimension of the Cantor set
is independent of the US intensity and it does not fully capture
the efficiency of a process. This is obvious from Eq. (8) but (vii) we
also give the counterexample of a partial-reinforcement program
(know to be ‘‘less conditioning’’ than continuous reinforcement),
where λ = 0 in some of the trial but α and β (hence, dh)
are kept fixed throughout. Here the efficiency (the Hausdorff di-
mension, a pointwise geometric indicator) is less important than
the determination of the geometric shape of the fractal, which
offers a more global and useful perspective than the number dh.
In fact, (viii) the mappings generating the fractal give a prediction
on the learning curve: there will be plateaux in the curve with
such and such distribution determined by the random algorithm
employed to pick the value of the parameters at each trial. Different
randomizations of Hull’s model will illustrate the point. Finally,
(ix) we make a preliminary connection with some results in the
cognitive literature on performance variability, which was found
to follow a multifractal pattern. With all due caution in comparing
widely different paradigms, we simulate performance variability
of internal origin by a Pavlovian conditioning model where the
salience of the stimuli slightly changes at each trial, according to
a random algorithm. Since dh = dh(αβ) only depends on ‘‘inter-
nal’’ parameters determined by the type of subject and the type
of stimuli presented, under a cognitive-interactionist perspective
the Hausdorff dimension can be reinterpreted as the part of the
efficiency of the process due to the characteristics of the subject in
relation to the stimuli presented. Again, fractal geometry has the
potential to open a new door of analysis.

The plan of the article is as follows. In Section 2, we recall some
basic aspects of deterministic fractals. In Section 3, we apply this
formalism to Hull’s associative model of Pavlovian conditioning.
Section 4 is devoted to the generalization of this one-dimensional
case to more realistic models with many cues or deterministically
varying parameters (CS salience, US magnitude), such as Rescorla–
Wagner (Section 4.1), Mackintosh and Pearce–Hall (Section 4.2),
and a new nonlinear model akin to Mackintosh (Section 4.3). Ran-
dom fractals are the subject of Section 5; flexible conditioning pro-
grams are discussed in Section 5.1,where the fractal construction is
extended to the very important case of random sets; a digression
on cognitive experiments unveiling a multifractal pattern in task
performance variability and its possible relation with our findings
is discussed in Section 5.2. Section 6 briefly explores some appli-
cations of the fractal picture, both to the practical understanding
of conditioning processes and to experimental predictions about
response variability. Conclusions and future directions are in Sec-
tion 7.
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