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h i g h l i g h t s

• Weak substitutability is shown to characterise what we call strict scalability of binary choice probabilities.
• Strict scalability lies between the classical notions of simple and monotone scalability.
• Strict scalability ensures that the utility scale represents stochastic preferences.
• A multinomial generalisation of weak substitutability that characterises multinomial strict scalability is defined.
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a b s t r a c t

This paper introduces the concept of strict scalability, which lies between the classical notions of simple
scalability (Krantz, 1964; Tversky and Russo, 1969) and monotone scalability (Fishburn, 1973). For binary
choices, strict scalability is precisely characterised by the well-known axiom of weak substitutability (at
least for countable domains). We also introduce a multinomial extension of weak substitutability that
characterises strict scalability for multinomial choice.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

This paper explores the axiomatic foundations of classical rep-
resentations of choice probabilities. Our primary purpose is to fill
a natural position in the gap between the well-known concept
of simple scalability (Krantz, 1964; Tversky & Russo, 1969) and
its weaker cousin, monotone scalability (Fishburn, 1973). Between
these two notions lies a new concept that we call strict scalability.

The motivation for introducing this new concept is twofold.
First, it repairs a ‘‘deficiency’’ in monotone scalability. The latter
property is compatiblewith a utility scale that fails to represent the
decision-maker’s stochastic preferences. We say that a is ‘‘stochas-
tically preferred’’ to b if the decision-maker chooses a over bmore
often than she chooses b over a in a binary choice context. A utility
scale ‘‘represents’’ stochastic preferences if it assigns higher utility
to a than to b if and only if (iff) a is stochastically preferred to b.
It is often natural to restrict attention to utility scales with this
property. Strict scalability requires monotone scalability with re-
spect to a utility scale that represents the decision-maker’s stochastic
preferences. This is obviously a more stringent requirement than
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monotone scalability simpliciter. We show that there exist mono-
tone scalable choice probabilities that are not strictly scalable, and
also that strict scalability is strictly weaker than simple scalability.

Second, when alternatives are drawn from a countable set, the
strictly scalable binary choice probabilities are precisely those that
satisfy the familiar property of strong stochastic transitivity (SST),
which is equivalent toweak substitutability (Davidson &Marschak,
1959). Strict scalability therefore gives a convenient characteri-
sation of the latter class of binary choice probabilities. Given the
prominence of SST and weak substitutability in the literature on
probabilistic choice, it is useful to have such a characterisation.

When the set from which alternatives are drawn need not
be countable, SST is necessary but not quite sufficient for strict
scalability of binary choice probabilities. Theorem 14 in Section 2.2
provides a set of necessary and sufficient conditions, analogous to
those in Fishburn’s (1973) representation theorem for monotone
scalability (ibid., Theorem A).

Section 3 extends our characterisation of strict scalability from
binary to multinomial choice probabilities. This complements the
work of Krantz (1964), Smith (1976) and Tversky (1972) on multi-
nomial simple scalability. In order to generalise our representation
theorem, we introduce a multinomial generalisation of weak sub-
stitutability that we call (not very imaginatively)multinomial weak
substitutability — see Definition 25.

The Appendix contains definitions of some standard properties
of binary choice probabilities, along with well-known results on
simple and monotone scalability in the binary choice context.
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Figs. 1 and 2 summarise the relationships discussed in the Ap-
pendix plus the new results on binary choice established in the
present paper. These figures elaborate (parts of) Figure 1 in Fish-
burn (1973), and follow similar principles in their construction —
these principles are explained in Section 2.3.

2. Binary choice probabilities

Given a non-empty set A of alternatives, a complete binary
choice specification (CBCS) gives the probability with which each
alternative is chosen from any binary choice set {a, b} ⊆ A. The
‘‘completeness’’ qualifier emphasises that choice probabilities are
defined for any doubleton subset of A.1 As a formal matter, we also
define choice probabilities for ‘‘pairs’’ containing two replicas of
the same alternative, but see Remark 1 on this convention. To avoid
non-trivialities, we assume that A contains at least two elements.

Formally, a CBCS is a pair (A, P), where A is a non-empty set of
alternatives with |A| ≥ 2 and P is a mapping

P : A × A → [0, 1]

that is balanced (Falmagne, 1985, Definition 4.9):

P (a, b) = 1 − P (b, a) (1)

for all a, b ∈ A. We call such P a binary choice probability (BCP) . If
a ̸= b then P (a, b) is interpreted as the probability (frequency)
with which the decision-maker selects a when (given repeated
opportunities of) choosing between a or b. The balancedness con-
dition excludes the possibility of abstention— choices are forced by
assumption. It also implies that

P (a, a) =
1
2

(2)

for any a ∈ A.

Remark 1. Let ΓA = {(a, a) | a ∈ A} and let DA = (A × A)⧹ΓA.
By defining BCPs on the domain A × A, rather than DA, we follow
an established (though not universal) convention in the litera-
ture. In particular, this definition puts our analysis on the same
footing as that of Fishburn (1973) and Tversky and Russo (1969)
so our results can be directly compared with theirs. However,
this convention does raise some interpretive and technical issues.
On the interpretive side, there is the question of whether or not
probabilities of the form P (a, a) should be accorded behavioural
significance. One might refrain from doing so, as most authors
who treat binary choice as a special case of multinomial choice
model appear, implicitly, to do2; or else one could assume that
there exist two replicas of each a ∈ A, as in Smith (1976), so that
subjects can be offered binary choices between two identical alter-
natives. In the latter case, (2) becomes a substantive behavioural
assumption, provided one can operationalise the idea of choosing
the ‘‘first’’ replica over the ‘‘second’’.3 In the former case, onemust
be careful that assumption (2) does not introduce unwarranted
restrictions on choice behaviour via axioms imposed on P — an
issue to which we return in Section 2.4.

1 Some authors, such as Suppes, Krantz, Luce, and Tversky (1989), use the term
‘‘closed’’ rather than ‘‘complete’’.
2 See, for example, Fishburn (1998, pp.277 and 284).
3 Assumption (2) is in the spirit of Yellott’s (1977) ‘‘invariance under uniform

expansions of the choice set’’. (See also Krantz, 1964, p.146.) However, it is not,
strictly speaking, implied by Yellott’s principle, which applies only to choice sets
with at least two distinct alternatives.

If A is finite, we fix an enumeration A = {a1, a2, . . . , an} so that
P may be described by the matrix

P =

⎡⎢⎢⎣
P (a1, a1) P (a1, a2) · · · P (a1, an)
P (a2, a1) P (a2, a2) · · · P (a2, an)

...
...

. . .
...

P (an, a1) P (an, a2) · · · P (an, an)

⎤⎥⎥⎦ . (3)

Thismatrix satisfies P+PT
= 1, where 1 is amatrixwith 1 in every

cell. We use Pi,· to denote the ith row of P and P·,j to denote the jth
column.

Given a CBCS, (A, P), it is natural to impute the following weak
stochastic preference relation on A: for any a, b ∈ A,

a ≿P b ⇔ P (a, b) ≥
1
2
. (4)

(The superscript appended to≿ emphasises that the binary relation
is derived from P .) In other words, a is ‘‘weakly stochastically
preferred’’ to b iff the decision-maker chooses a over b at least half
of the time. This is equivalent, given (1), to P (a, b) ≥ P (b, a). For
convenience, wewill sometimes refer to≿P simply as the decision-
maker’s ‘‘stochastic preferences’’.

The asymmetric and symmetric parts of≿P are denoted ≻
P and

∼
P respectively, and satisfy

a ≻
P b ⇔ P (a, b) >

1
2

(5)

and

a ∼
P b ⇔ P (a, b) =

1
2
.

Note that ≿P is complete by construction (i.e., for any a, b ∈ A,
not necessarily distinct, either a ≿P b or b ≿P a) but ≿P need not
be transitive. It will be transitive iff (A, P) satisfies weak stochastic
transitivity (WST) — see Definition 33 in the Appendix.

Fishburn (1973) introduces another useful binary relation that
can be defined from P:4

a ≿P
0 b ⇔ P (a, c) ≥ P (b, c) for any c ∈ A. (6)

(Once again, the superscript appended to ≿0 emphasises its de-
pendence on P .) It is clear that ≿P

0 is transitive, though it need
not be complete. Fishburn (1973, Theorem 1), proves that it is
complete iff P satisfies a condition he calls weak independence
(Definition 40 in the Appendix), which is logically independent of
WST (Fishburn, 1973, Figure 1). Moreover, as we will demonstrate
(Lemma 12), even if P satisfies weak stochastic transitivity and
weak independence, so that ≿P and ≿P

0 are both weak orders,
it need not be the case that ≿P

=≿P
0 . A necessary and sufficient

condition for these two binary relations to coincide is the following
well-known property:

Definition 2. A CBCS satisfiesweak substitutability iff the follow-
ing holds for any a, b, c ∈ A:

P (a, b) ≥
1
2

⇒ P (a, c) ≥ P (b, c) . (7)

Lemma3. A CBCS satisfies≿P
=≿P

0 iff it satisfiesweak substitutability.

4 Properly speaking, Fishburn (1973, p.337), introduces the following conditional
decisiveness relation: for any a, b ∈ A,

a≻̂P
0b ⇔ P (a, c) > P (b, c) for some c ∈ A.

Defining

a ≿P
0 b ⇔ (b, a) ̸∈ ≻̂

P
0

gives (6). Note that ≿P
0 is complete iff ≻̂P

0 is asymmetric.
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