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h i g h l i g h t s

• We present a fully Bayesian approach using a slice–Gibbs sampler to estimate all of the parameters in the multilevel IRT framework.
• Two methods of model assessment are proposed to compare the goodness of fit between the models.
• Empirical simulation results show that the proposed method has some real advantages in parameter recovery and model fit.
• The significance of our findings is illustrated with an application to a real data set.
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a b s t r a c t

In a fully Bayesian framework, a novel slice–Gibbs algorithm is developed to estimate a multilevel item
response theory (IRT) model. The advantage of this algorithm is that it can recover parameters well
based on various types of prior distributions of the item parameters, including informative and non-
informative priors. In contrast to the traditional Metropolis–Hastings (M–H) within Gibbs algorithm,
the slice–Gibbs algorithm is faster and more efficient, due to its drawing the sample with acceptance
probability as one, rather than tuning the proposal distributions to achieve the reasonable acceptance
probabilities, especially for the logistic model without conjugate distribution. In addition, based on the
Markov chain Monte Carlo (MCMC) output, two model assessment methods are investigated concerning
the goodness of fit betweenmodels. The information criterionmethod on the basis of marginal likelihood
is proposed to assess the different structuralmultilevelmodels, and the cross-validationmethod is used to
evaluate the overall multilevel IRT models. The feasibility and effectiveness of the slice–Gibbs algorithm
are investigated in simulation studies. An application using a real data involving students’ mathematics
test achievements is reported.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Multilevel analysis has become increasingly popular in ed-
ucational and psychological assessments (e.g. Goldstein, 2011;
Goldstein & McDonald, 1987; Longford & Muthén, 1992; Muthén,
1989; Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). The
rapid growth of multilevel item response theory (IRT) modeling
has resulted in two realizations. First, the interaction between
a person and item is constructed by the IRT model, rather than
the traditional aggregate test level performance, assuming all
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questions contributed equally to the understanding of students’
abilities. Compared with the traditional method, the IRT model
provides amore nuanced viewof the information for each question
provided to a student. Second, in the field of social sciences, a
critical issue that is ignored by IRT models concerns unobserved
heterogeneity of item responses due to the hierarchical structure
of data (e.g., data from students nested within schools/classes
or measurements nested within individuals). The multilevel IRT
modeling accounts for both population heterogeneity and makes
valid inferences from item response data that has a nested or hier-
archical structure. The multilevel IRT models for binary response
data have also been increasingly used to handle a hierarchical
structure (e.g. Adams, Wilson, & Wu, 1997; Fox, 2010; Fox & Glas,
2001; Kamata, 2001; Maier, 2001; Mislevy & Bock, 1989; Natesan,
2007).

A variety of estimation procedures have been proposed to es-
timate the parameters of multilevel IRT models. The multilevel
logistic regression models belong to one class of generalized linear
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mixed models (GLMMs) (e.g. Clayton, 1996; Hedeker & Gibbons,
1994; McCulloch & Searle, 2001). Marginal maximum likelihood
(MML) (Bock & Aitkin, 1981) is one of themost important methods
for estimating GLMMs. However, the complex dependency struc-
tures result in the nesting of integrals inmultilevel IRTmodels, and
most estimation equations do not have a closed form. Thus, this
approach requires a numerical or Monte Carlo integration or an
integral approximation method that includes Laplace approxima-
tion (Raudenbush, Yang, & Yosef, 2000), adaptive quadrature (Bock
& Schilling, 1997; Rabe-Hesketh, Skrondal, & Pickles, 2002, 2005),
and Monte Carlo integration (Kuk, 1999; Skaug, 2002). Therefore,
MML leads to a complicated estimation procedure. Moreover, it is
difficult to incorporate uncertainty (standard errors) into param-
eter estimates (Patz & Junker, 1999). A fully Bayesian procedure
remains straightforward for complex dependency structures in
multilevel IRT models and allows for complete uncertainty calcu-
lations (Tsutakawa & Soltys, 1988). Studies focusing on multilevel
models from a Bayesian perspective usually use a probit link func-
tion in their formulation (Albert, 1992; Béguin & Glas, 2001; Fox,
2005; Fox&Glas, 2001;Hoijtink, 2000; Tanner &Wong, 1987). Also
popular in Bayesian multilevel approach studies is the cumulative
logit function (Browne & Draper, 2006; Gilks & Wild, 1992; Zeger
& Karim, 1991).

In this paper, an efficient slice–Gibbs sampling algorithm in a
fully Bayesian framework is proposed to estimate multilevel two-
parameter logistic models. The slice–Gibbs algorithm, as the name
suggests, can be conceived of an extension of Gibbs algorithm.
The sampling process consists of two parts. One part is the slice
algorithm (Bishop, 2006;Damien,Wakefield, &Walker, 1999;Neal,
2003), which samples the logistic IRT model from the truncated
full conditional posterior distribution by introducing the auxil-
iary variables. The other part is Gibbs algorithm which updates
the linear multilevel structure parameters based on the sampled
values from IRT model, where the linear multilevel models are
assumed to follow normal distributions (Béguin & Glas, 2001; Fox,
2005, 2010; Fox & Glas, 2001). Additionally, the Gibbs algorithm
part implements sampling by using conjugate prior and greatly
increases efficiency (Albert, 1992; Tanner &Wong, 1987). The mo-
tivation for the approach ismanifold. First, using the slice sampling
method to estimate the two-parameter logistic model (Lord, 1980;
Tsutakawa, 1984; van der Linden & Hambleton, 1997) has the ad-
vantage of a flexible prior distribution being introduced to obtain
samples from the full conditional posterior distributions rather
than being restricted to using the conjugate distributions, which
is required in Gibbs sampling (Gelfand & Smith, 1990; Geman
& Geman, 1984) and limited using the normal ogive framework
(Albert, 1992; Béguin & Glas, 2001; Fox, 2005, 2010; Fox & Glas,
2001; Tanner & Wong, 1987). It allows informative priors and
non-informative priors of the item parameters. Second, the
Metropolis–Hasting algorithm (Chen, Shao, & Ibrahim, 2000;
Chib & Greenberg, 1995; Hastings, 1970; Metropolis, Rosenbluth,
Rosenbluth, Teller, & Teller, 1953; Tierney, 1994) depends on the
proposal distributions and variances (tuning parameters) and is
sensitive to step size. If the step size is too small, the chainwill take
longer to traverse the target density. If the step size is too large,
there will be inefficiencies due to a high rejection rate. However,
the slice sampler automatically tunes the step size to match the
local shape of the target density and draws the samples with
acceptance probability equal to one. Thus, it is easier and more
efficient to implement.

The rest of this paper is organized as follows. In Section 2, the
theoretical foundation of the slice–Gibbs sampling algorithm is
presented. A general multilevel two-parameter logistic model and
model identifiability are presented to explain the binarymultilevel
data in Section 3. A detailed slice–Gibbs algorithm is given in
Section 4. In Section 5, two methods of model assessment are

proposed to compare the goodness of fit between the models
by using two different parameter structures. In Section 6, four
simulated examples that focus on the performance of parameter
recovery, the flexibility and sensitivity of prior distributions for
the slice sampler, the results of comparing with the M–H within
Gibbs algorithm, and information criteria and cross-validation log-
likelihood to assess model fit are given. In Section 7, the results
of model assessment and performance of the slice–Gibbs sampler
in practical situations are shown by an empirical example. Finally,
some concluding remarks are presented in Section 8.

2. Theoretical foundation of the slice–Gibbs algorithm

The motivation for the slice sampling algorithm is that we
can use the auxiliary variable approach to sample from posterior
distributions arising from Bayesian non-conjugate models. The
theoretical basis for this algorithm is described below:

Suppose that we wish to simulate values from a density func-
tion q(x) (the target density) given by q(x) ∝ ψ(x)

∏N
i=1li(x) which

is not possible to sample directly, where ψ(x) is a known density
fromwhich samples can be easily drawn and li(x) are non-negative
invertible functions that do not have to be density functions. We
introduce the auxiliary variables δ = (δ1, . . . , δN ), and each ele-
ment of the vector from (0,+∞). The inequalities δi < li(x) are
established, and the joint density can be written as

q(x, δ1, . . . , δN ) ∝ ψ(x)
N∏
i=1

I {δi < li(x)} . (1)

It is easy to show that if the auxiliary variables are integrated out,
we obtain the marginal distribution q(x),

q(x) =

∫ l1(x)

0
· · ·

∫ lN (x)

0
q(x, δ1, . . . , δN )dδN · · · dδ1

∝ ψ(x)
∫ l1(x)

0
· · ·

∫ lN (x)

0
1dδN · · · dδ1 = ψ(x)

N∏
i=1

li(x). (2)

Then we obtain the set∆δi = {x |δi < li(x) } based on the invertible
property of the function li(x), which is called the ‘‘slice’’ defined
by δi (Neal, 2003). We simulate values from the slice sampler
by repeatedly sampling from the full conditional distributions,
proceeding as follows at iteration t:

• Sample δ(t)i ∼ U(0, li(x(t−1))), i = 1, . . . ,N .
• Sample x(t) ∼ ∆δi = {x

⏐⏐⏐δ(t)i < li(x) }, thereby deriving a
horizontal ‘‘slice’’ under the density function.

A Markov chain based on the slice sampler can be constructed by
sampling points alternately from uniform distribution under the
density curve and only concerning the horizontal ‘‘slice’’ defined
by the current sample points.

The slice sampler shows the better performance, even if we
have misspecified priors and proposal distributions or variances
in the Metropolis–Hasting (M–H) algorithm. Moreover, more flex-
ible specification of priors can be adopted without using conju-
gate priors, which is the limitation of Gibbs sampling, and it is
not sensitive to the specified priors that will be conducted in
the simulation. Furthermore, it avoids retrospective tuning in the
M–H algorithm if we do not know how to choose a proper tuning
parameter or if no value for the tuning parameter is appropriate.
Thus, this approach is more efficient than simple M–H sampling.
Considering the target density q(x) ∝ ψ(x)l(x), we select ψ(x) as
a special proposal density to generate candidate x∗ and we have
acceptance probability α(x(t), x∗) = min{1, l(x∗)

l(x(t))
}. Next, we sample

uniform random variable δ if δ < l(x∗)
l(x(t))

, the chain will move on.



Download	English	Version:

https://daneshyari.com/en/article/6799249

Download	Persian	Version:

https://daneshyari.com/article/6799249

Daneshyari.com

https://daneshyari.com/en/article/6799249
https://daneshyari.com/article/6799249
https://daneshyari.com/

