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h i g h l i g h t s

• Classification images are psychophysical estimates of perceptual mechanisms that resemble ‘filters’.
• They are almost invariably connected with human discrimination via a template-matching operation, however the connection is far more opaque than

envisaged by this operation.
• Extension to higher-order statistical properties of the classified noise is necessary for adequately constraining potentially underlying circuit models.
• Classification images are best thought of as rich descriptors of data structure, rather than intuitively interpretable snapshots of system components.
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a b s t r a c t

Classification images have become popular tools in psychophysics, yet difficulties associated with their
interpretation have often hindered their application. Alternative methods for characterizing perceptual
filters have been proposed, and the discussion has often focussed on the degree to which classification
images are optimal statistical estimators of system components (e.g. kernels). This technical note argues
that those difficulties become irrelevant once the tool is situated within a data-driven interpretational
framework. Within this framework, classification images and their nonlinear derivatives are understood
not as transparent estimates of system components, but instead as transparent descriptors of data
structure. The many pitfalls associated with the former approach, and the power of the latter, are
demonstrated via combination of counter-intuitive computer simulations with empirical examples from
published literature. A change in perspective over themanner inwhich this tool is understood and utilized
may lead to a more productive engagement with this methodology.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

1.1. What is a classification image, and why is it useful?

We constantly ‘filter’ the world around us. Our sensors (eyes,
ears, nose, tongue, skin) are bombarded by signals of various kinds,
and our ability to discriminate between two such signals (e.g. blue
versus red colours) relies on perceptual filters that retain one
signal and throw out the other. Our brain then exploits the activity
of many such filters to perform specific actions for the purpose
of successfully interacting with the environment. In its simplest
account, this filtering process can be summarized by a trace (bell-
shaped curve in Fig. 1A) that records the response of the perceptual
filter (plotted on the y axis) to different values of an environmental
characteristic, such as the position of an object along the horizon
(plotted on the x axis). From Fig. 1A we infer that this specific
filter is selective for objects sufficiently close to themiddle position
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along the x axis (stimulus in Fig. 1C), but stops responding when
the object is moved further away from the midpoint (Fig. 1D).

The filtering stage outlined above returns a continuous value.
Our behavioural decisions, however, do not come in this format:
we either decide to run away fromapredator, or stay put;we either
eat a potentially poisonous food item, orwe drop it. In otherwords,
most decisions we take on howwe use our sensory representation
to interact with the world are discrete (typically binary): we either
choose to take an action, or we choose not to. How do we go from
our perceptual representation, which comes in the form ‘it is 2×
more likely that a predator is hiding behind that bush than not’, to
the decision ‘run away!’?

The simplest model of how this conversion may happen in-
volves a threshold (Green & Swets, 1966): if the ratio between
the likelihood of ‘predator’ versus ‘non-predator’ is greater than
some value, e.g. 1, we run away; if it is smaller than that value,
we stay put. Because we tend to produce this kind of response
somewhat erratically, i.e. our estimate of the likelihood is not
always identical under the same environmental conditions due
to noise in our sensors and our decisional process (Green, 1964;
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Fig. 1. The linear–nonlinear model consists of a linear filtering stage (A) followed
by a nonlinear static nonlinearity (B). The linear filter specifies weights associated
with different portions of the incoming stimulus (e.g. different bar positions along
the x axis) and converts each stimulus into a single decision variable. The static
nonlinearity takes the decision variable as its own input, and converts it into a
psychophysical choice (‘yes’ versus ‘no’ in this example) according to a specified
probabilistic rule. Solid/dashed grey lines indicate processing paths through this
model for well-matched and mismatched example stimuli (C/D). When stimuli
contain multiple bars (E–G), the filter in A acts as a weighting function that sums
across bars.

Neri, 2010a), any model of what decision we take must be itself
probabilistic: it can only predict thatwewill runwith probability x.
To this end, themodel in Fig. 1A converts the output from the filter
(on the y axis) onto the probability that it will lead to one of two
binary choices (e.g. ‘yes’ versus ‘no’). The ‘link’ function is called a
static nonlinearity (an example is shown in Fig. 1B). This function
is necessary if one is to re-format the output of the filtering stage
into the currency of real-world actions.

The combination of the filtering stage and the static nonlinear-
ity in Fig. 1A–B is termed a ‘linear–nonlinear’ (LN) model (Murray,
2011; Ostojic & Brunel, 2011): the ‘linear’ part is the filtering stage
(A), the ‘nonlinear’ part is the static nonlinearity (B). This is a
minimal model: anything simpler will not provide a description of
sensory processing that is evenpassable (Neri, 2015). It is therefore
understandable that this model is used as a reference point in
computational accounts of sensory processing by neurons (Osto-
jic & Brunel, 2011) as well as observers (Murray, 2011): it is a
sensible building block to start with; more complex models can
be constructed using blocks of this kind (Carandini et al., 2005) if
called for by the phenomenon under study (e.g. Fournier, Monier,
Pananceau, & Fregnac, 2011). In particular with relation to the
topic discussed in this article, the LN model is often regarded as
the theoretical foundation for computing classification images in
sensory psychophysics (Ahumada, 2002; Murray, 2011), which
brings us to the question: what are classification images?

If we accept the LN model as an adequate representation of the
sensory process at hand, say human vision, the classification image

is an ‘image’ of the filtering stage in Fig. 1A: when the underlying
sensory filter takes on the shape in Fig. 1A, so will the classification
image (Ahumada, 2002). In otherwords, if our viewpoint is informed
by the LN model, the classification image technique is a tool for
deriving a picture of the filtering stage (Murray, 2011).Why should
we want to obtain such a picture?

Classical approaches to sensory processing in animals, e.g. Fech-
nerian psychophysics, have traditionally emphasized perfor-
mance: the experimenter focuses on measuring how well the
animal can detect/discriminate among different signals (Green &
Swets, 1966). From thesemeasurements, inferences are sometimes
made about the possible shape of the filtering stage, but this is typ-
ically achieved via indirect routes (e.g. poorly constrained models
with several free parameters) or not at all: the transduction from
stimulus to filter output is modelled as a static nonlinear function,
effectively incorporating it into the N portion of the LN model
and shifting the focus of the investigation onto this component
alone (Solomon, 2009). With classification images, the opposite
approach is taken: the focus is shifted onto the filtering stage,
while the decisional nonlinearity that maps filter output onto
choice is bypassed (Neri, 2010b). In this sense, the two approaches
are complementary and should be used synergistically whenever
possible (Neri, 2011b, 2014b).

There are two critical ingredients that enable this technique to
take a snapshot of the filtering stage in a way that is not accessible
to e.g. Fechnerian psychophysics. First, the injection of a controlled
small perturbation into the stimulus: external noise. To provide a
simple example, if observers are asked to discriminate between
a bar in the middle (Fig. 1C) and a bar to the side (Fig. 1D), the
luminance of each image bar along the x axismaybe independently
jittered by a random source (see toy examples in Fig. 1E–G). In
this way, the output of the filtering stage in the observer’s brain
will not always be the same in response to the central bar, due to
small fluctuations introduced by the added pixel noise; further, the
decision taken by the observer on the basis of the filter output will
also vary from trial to trial (see ‘yes’/‘no’ responses corresponding
to Fig. 1E–G), and those variations will depend on the fluctuations
introduced by the noise. Sometimes, the added pixel noise will
make a bar-in-the-middle stimulus look very much like a bar-to-
the-side stimulus; on those trials, the observer will likely classify
the bar-in-the-middle stimulus as bar-to-the-side. On other trials,
the added noise will emphasize those features of the bar-in-the-
middle stimulus that set it apart from bar-to-the-side; on those
trials, the observer will likely classify the bar-in-the-middle stim-
ulus as containing a bar in the middle. The term ‘classification’ in
‘classification images’ comes from the classification carried out by
the observer as just described.

The addition of noise per se, however, is not in itself new: there
is a long tradition of using stimulus noise to study its impact on
performance (Ahumada, 1987; Pelli & Farell, 1999). The additional
ingredient is that, when adding noise, the experimenter keeps
track of the specific noise sample that was added on every separate
perturbation that led to a classification by the observer (Ahumada,
1967; Ahumada & Marken, 1971). This is different than classical
approaches where, say, 1000 trials are run at some noise intensity
x1 to measure observer performance p1 (whatever metric is used
to assess it), this process is repeated for different noise intensity
values x2, x3 and so on, and finally the relationship between x and
p becomes the main subject of investigation. In those approaches,
the specific noise samples presented during the 1000 trials at
intensity x1 are all lumped into one classwithout regard for the fact
that, on some of those 1000 trials, the specific noise sample that
was added to the target signal may have made it easier to detect,
while the opposite may have been true for other noise samples
in the 1000 trial sequence. In the classification image technique,
different noise samples (even if generated by a noise source of
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